Date of download: 10/23/2017 Copyright © ASME. All rights reserved.

Slides:



Advertisements
Similar presentations
Date of download: 5/31/2016 Copyright © ASME. All rights reserved. From: Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon.
Advertisements

Date of download: 6/3/2016 Copyright © ASME. All rights reserved. From: Effect of Second Order Velocity-Slip/Temperature-Jump on Basic Gaseous Fluctuating.
Date of download: 6/23/2016 Copyright © ASME. All rights reserved. From: Heat Exchanger Design of Direct Evaporative Cooler Based on Outdoor and Indoor.
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: Convective Heat Transfer and Contact Resistances Effects on Performance of Conventional.
Date of download: 6/28/2016 Copyright © ASME. All rights reserved. From: From the Casimir Limit to Phononic Crystals: 20 Years of Phonon Transport Studies.
Date of download: 7/2/2016 Copyright © ASME. All rights reserved. From: Inverse Heat Conduction in a Composite Slab With Pyrolysis Effect and Temperature-Dependent.
Date of download: 7/3/2016 Copyright © ASME. All rights reserved. From: Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Energy Conservative Dissipative Particle Dynamics Simulation of Natural Convection.
Date of download: 7/7/2016 Copyright © ASME. All rights reserved. From: Modeling of Heat Transfer in a Moving Packed Bed: Case of the Preheater in Nickel.
Date of download: 7/9/2016 Copyright © ASME. All rights reserved. From: Statistical Analysis of Surface Nanopatterned Thin Film Solar Cells Obtained by.
Date of download: 9/18/2016 Copyright © ASME. All rights reserved. From: Oscillating Heat Transfer Correlations for Spiral-Coil Thermoacoustic Heat Exchangers.
Date of download: 9/26/2017 Copyright © ASME. All rights reserved.
From: Thermal-Hydraulic Performance of MEMS-based Pin Fin Heat Sink
Date of download: 10/3/2017 Copyright © ASME. All rights reserved.
Date of download: 10/5/2017 Copyright © ASME. All rights reserved.
Date of download: 10/6/2017 Copyright © ASME. All rights reserved.
Date of download: 10/8/2017 Copyright © ASME. All rights reserved.
Date of download: 10/9/2017 Copyright © ASME. All rights reserved.
From: Forced Flexural Gravity Wave Motion in Two-Layer Fluid
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/13/2017 Copyright © ASME. All rights reserved.
Date of download: 10/14/2017 Copyright © ASME. All rights reserved.
From: Nanoscale Heat Conduction Across Metal-Dielectric Interfaces
Date of download: 10/20/2017 Copyright © ASME. All rights reserved.
Date of download: 10/21/2017 Copyright © ASME. All rights reserved.
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
Date of download: 10/23/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/24/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/25/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/26/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/29/2017 Copyright © ASME. All rights reserved.
Date of download: 10/30/2017 Copyright © ASME. All rights reserved.
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
Date of download: 11/1/2017 Copyright © ASME. All rights reserved.
From: Temperature Effect on Phase-Transition Radiation of Water
Date of download: 11/2/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/3/2017 Copyright © ASME. All rights reserved.
Date of download: 11/4/2017 Copyright © ASME. All rights reserved.
Date of download: 11/8/2017 Copyright © ASME. All rights reserved.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Date of download: 11/11/2017 Copyright © ASME. All rights reserved.
Date of download: 11/12/2017 Copyright © ASME. All rights reserved.
Date of download: 11/13/2017 Copyright © ASME. All rights reserved.
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
Date of download: 11/16/2017 Copyright © ASME. All rights reserved.
Date of download: 12/18/2017 Copyright © ASME. All rights reserved.
Date of download: 12/19/2017 Copyright © ASME. All rights reserved.
Date of download: 12/19/2017 Copyright © ASME. All rights reserved.
From: Impact of Interface Resistance on Pulsed Thermoelectric Cooling
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/24/2017 Copyright © ASME. All rights reserved.
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
From: Modeling a Phase Change Thermal Storage Device
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/26/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 12/31/2017 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/2/2018 Copyright © ASME. All rights reserved.
Date of download: 1/22/2018 Copyright © ASME. All rights reserved.
Date of download: 3/3/2018 Copyright © ASME. All rights reserved.
Date of download: 12/22/2018 Copyright © ASME. All rights reserved.
Presentation transcript:

Date of download: 10/23/2017 Copyright © ASME. All rights reserved. From: Influence of Hot Electron Scattering and Electron–Phonon Interactions on Thermal Boundary Conductance at Metal/Nonmetal Interfaces J. Heat Transfer. 2014;136(9):092401-092401-6. doi:10.1115/1.4027785 Figure Legend: Schematic diagram showing the transitions in the three energy levels in the metal and phonon frequencies in the nonmetal that we account for in this work. For our calculation of hes of Au/Silicon in this paper, we use the phonon dispersion relation for silicon along the Γ→X direction computed by Weber [37].

Date of download: 10/23/2017 Copyright © ASME. All rights reserved. From: Influence of Hot Electron Scattering and Electron–Phonon Interactions on Thermal Boundary Conductance at Metal/Nonmetal Interfaces J. Heat Transfer. 2014;136(9):092401-092401-6. doi:10.1115/1.4027785 Figure Legend: (a) Electronic transition probabilities in a gold film as a function of the phonon angular frequency of Si at 300 K and 3000 K effective electron temperatures. The probability of absorbing a phonon is higher than the probability of emitting a phonon at 300 K but at 3000 K, the probability of emission is higher. There is a sharp drop in the probabilities at ω≈3×1013 rads-1 due to the low group velocities of the transverse acoustic modes near the Brillouin zone edge. (b) Average electronic transition probability, η¯A,E, as a function of temperature. For low temperatures Te,eff≤800 K, the average probability of absorbing phonons is higher than that for emitting phonons. As temperature increases, the phonon emission probability increases while the phonon absorption probability decreases.

Date of download: 10/23/2017 Copyright © ASME. All rights reserved. From: Influence of Hot Electron Scattering and Electron–Phonon Interactions on Thermal Boundary Conductance at Metal/Nonmetal Interfaces J. Heat Transfer. 2014;136(9):092401-092401-6. doi:10.1115/1.4027785 Figure Legend: hes predicted from the theoretical framework developed in this work compared with the experimentally determined hes from the thermoreflectance data analyzed with the two-temperature model [27]. The hes increases linearly with increasing effective electron temperature.

Date of download: 10/23/2017 Copyright © ASME. All rights reserved. From: Influence of Hot Electron Scattering and Electron–Phonon Interactions on Thermal Boundary Conductance at Metal/Nonmetal Interfaces J. Heat Transfer. 2014;136(9):092401-092401-6. doi:10.1115/1.4027785 Figure Legend: hes as a function of effective electron temperature for Au/Si (red solid line), Au/Ge (dashed line), and Au/diamond (dashed-dot line) at T0 = 300 K, substrate temperature. The values of the predicted hes are different for different phonon dispersions of the substrate. (Inset) For comparison, we have also plotted Kapitza conductance for Au/diamond at T0 = 100 K as a function of electron temperature and the model prediction from Ref. [16] for negligible electron–phonon nonequilibrium.