Particle Recipes and Physics Applications

Slides:



Advertisements
Similar presentations
Hypernuclei: A very quick introduction Electroproduction of hypernuclei The experimental Program at Jefferson Lab Update on the analysis of O and Be targets.
Advertisements

Development of the Partical IDentification in the PANDA – Experiment Report in the Technical Board Georg Schepers for the PID TAG PANDA – meeting 18. September.
DPG 2004 Köln C. Schwarz Particle Identification with the PANDA detector at GSI C.Schwarz, GSI.
1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
The Lightweight Straw Tube Tracker for PANDA Detector at GSI Andrey Sokolov *,1, James Ritman 1, Peter Wintz 1, Paola Gianotti 2, Dario Orecchini 2 1 Institut.
De Mori Francesca,Turin University and INFN DAFNE04 Frascati, June Very preliminary results of Non Mesonic Weak Decays in FINUDA De Mori Francesca.
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
C. Schwarz Physics with Antiprotons - Detector - Detector requirements Overview of the detector concept Detector components Trigger Costs.
X. Dong 1 May 10, 2010 NSD Monday Morning Meeting First Observation of an Anti-Hypernucleus Xin Dong for the STAR Collaboration Science 328, 58 (2010)
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Carsten Schwarz PANDA June 2004 CID Cherenkov Imaging Detectors ● RICH software at HERMES, Ralf Kaiser, Glasgow ● Present status of DIRC, C.S., GSI ● Spiralling.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
Position Sensitive SiPMs for Ring Imaging Cherenkov Counters C.Woody BNL January 17, 2012.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Double hypernuclei at PANDA M. Agnello, F. Ferro and F. Iazzi Dipartimento di Fisica Politecnico di Torino SUMMARY  The physics of double-hypernuclei;
Performance of the PANDA Barrel DIRC Prototype 1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 2 Goethe-Universität Frankfurt Marko Zühlsdorf.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
EIC Detector – JLab – 04/June/2010 Cisbani / HERMES RICH 1 HERMES: Forward RICH Detector Evaristo Cisbani / INFN-Rome Sanità Group Most of the slides from.
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
Valery Dormenev Institute for Nuclear Problems, Minsk
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
Development of TOP counter for Super B factory K. Inami (Nagoya university) 2007/10/ th International Workshop on Ring Imaging Cherenkov Counters.
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
PANDA GSI 13. December 2006 PID TAG Georg Schepers PANDA Technical Assessment Group PID Status Report G. Schepers for the PID TAG GSI PID TAG.
SksMinus status Hyperball collaboration meeting 2009/3/11 K. Shirotori.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
The RICH Detectors of the LHCb Experiment Carmelo D’Ambrosio (CERN) on behalf of the LHCb RICH Collaboration LHCb RICH1 and RICH2 The photon detector:
1 Participation of the Joint Institute for Nuclear Research (Dubna) in PANDA experiment at Future GSI Facility Nuclear Structure Physics Physics with Antiprotons.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Scan ~100 bar entry positions with laser diode measures transmitted intensity (relative to reference intensity) determine attenuation length (Λ) by aiming.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Aerogel Cherenkov Counters for the ALICE Detector G. Paić Instituto de Ciencias Nucleares UNAM For the ALICE VHMPID group.
Christian Lippmann (ALICE TRD), DPG-Tagung Köln Position Resolution, Electron Identification and Transition Radiation Spectra with Prototypes.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Search for neutron-rich hypernuclei in FINUDA: preliminary results presented by M. Palomba 1 for the FINUDA Collaboration 1 INFN and Dipartimento di Fisica,
A Barrel DIRC using radiator plates AntiProton ANnihilations at DArmstadt Study of QCD with Antiprotons Charmonium Spectroscopy Search for Exotics Hadrons.
Experimental Challenges for Hypernuclear Physics at Panda Patrick Achenbach U Mainz with contributions from the PANDA Hypernuclear groups Sept. 2o11.
Study of Cherenkov detectors for high momentum charged particle identification in ALICE experiment at LHC Guy Paic Instituto de Ciencias Nucleares UNAM.
Tracker Neutron Detector: INFN plans CLAS12 Central Detector Meeting - Saclay 2-3 December 2009 Patrizia Rossi for the INFN groups: Genova, Laboratori.
CLAS12 Particle Identification S. Stepanyan (JLAB) Probing Strangeness in Hard Processes INFN Frascati, October 18 – 21, 2010.
PhD thesis: Simulation & Reconstruction for the PANDA Barrel DIRC Official name: Open charm analysis tools Supervisor: Prof. Klaus Peters Maria Patsyuk.
DIRCs for PANDA M. Hoek for the PANDA Cherenkov Group.
Prospect of SiPM application to TOF in PANDA
English for young physicists WS 09/10 Niklas Müller
Status of BESIII and upgrade of BESIII
Florida International University, Miami, FL
The Electromagnetic Calorimetry of the PANDA Detector at FAIR
Electromagnetic Physics Working Group discussion
Particle Identification (PID) at HIEPA Experiment
Central detector for CLAS12: CTOF and Neutron detector
Plans for nucleon structure studies at PANDA
Particle Identification in LHCb
RICH simulation for CLAS12
The First
Instituto de Ciencias Nucleares UNAM
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
Progress on the Focusing DIRC R&D
Software Development for the PANDA Barrel DIRC
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
Progress on J-PARC hadron physics in 2016
Search for f-N Bound State in Jefferson Lab Hall-B
LHCb Particle Identification and Performance
RICH simulation for CLAS12
/ Separation and the New Dirc
Presentation transcript:

Particle Identification@PANDA: Recipes and Physics Applications Concettina Sfienti, GSI Darmstadt Hypernuclear Physics Double Hypernuclei in PANDA Particle IDentification in PANDA Cherenkov R&D Conclusions & Outlook XII International Conference on Hadron Spectroscopy 8-13 October 2007, INFN- Laboratori Nazionali di Frascati, Frascati (Roma) - Italy

Baryon-Baryon Interaction Takahashi et al. 1963: Danysz et al. 10LLBe 1966: Prowse 6LLHe 1991: KEK-E176 13 LLB 2001: KEK-E373 6LLHe 2001: AGS-E906 4LLH (~15) Hypernuclear Physics

Strange baryons in nuclear systems S=1: L-, S-hypernuclei nuclear structure, new symmetries The presence of a hyperon may modify the size, shape… of nuclei New specific symmetries hyperon-nucleon interaction strange baryons in nuclei weak decay S=2: X-atoms, X-, 2L-hypernuclei nuclear structure baryon-baryon interaction in SU(3)f H-dibaryon S=3: W-atom, (W-,LX-,3L-hypernuclei) Hypernuclear Physics

Birth, Life and Death of a Hypernucleus target nucleus p,n  L g electromagnetic decays nonmesonic weak decay mesonic decays hadronic decay in emulsion strangeness deposition FINUDA strangeness production (p+, K+), (p-, K0) BNL,KEK,(GSI) strangeness exchange (K_, p-) ,(K_, p0) BNL,KEK,JPARC electroproduction (e,e´K+) , (g,K+) Jlab, MAMI-C Required energy resolution K,p: 1-2 MeV Kstopped: 1 MeV e: 0.5 MeV g-transitions: 5 keV Hypernuclear Physics

Production of LL-Hypernuclei simultaneous implantation of two L is not feasible reaction with lowest Q-value: X-pLL: 28MeV direct implantation of a X- via a two-body reaction difficult because of large momentum transfer X- capture: X- p  LL + 28 MeV X- L +28MeV g in most cases two-step process production of X- in primary nucleus slowing down and capture in a secondary target nucleus spectroscopic studies only possible via the decay products Double Hypernuclei in PANDA

Production of X- X- production PANDA@HESR X- conversion in 2 L: p(K-,K+)X- needs K- beam (c·t=3.7cm) recoil momentum >460 MeV/c KEK-E176: 102  E373: 103 stopped X per week AGS-E885: 104 PANDA@HESR X- capture: X- p  LL + 28 MeV X- 3 GeV/c Kaons _ X L trigger p +28MeV g few times 105 stopped X per day  g-spectroscopy feasible Double Hypernuclei in PANDA

Strategy Universal detector for high luminosity tag primary reaction by X+ or 2K+ in forward direction  trigger measure incoming track of X- by active secondary target  reduce BG measure emitted g-rays with high resolution  spectroscopy Antiproton momentum close to threshold (3GeV/c) only few open channels with double strangeness production: Low mass secondary targets (Li,Be,B,C) in four separated sections identification can rely on existing information on single hypernuclei low g-ray absorption no x-ray background  B Li Be C Double Hypernuclei in PANDA

Integration in the Setup θlab < 45° X+, K trigger θlab = 45°-90°, X- capture , Hypernucleus formation θlab > 90°, g-detection at backward angles Neutron background (16000 n s-1 per HPGe Crystal ) Der polarwinkel theta. Der nachweiss des antihyperon und seine assoziierten kaonen erfolgt unter dem winkelbereich von 0-45grad. 2. Geschieht zwischen 45-90 3. Wird bei ruckswartswinkeln nachgewiesen wo der hadronische untergrund geringer ist. The PANDA Detector

PANDA Spectrometer Muon Detectors Forward RICH Barrel DIRC Barrel TOF Endcap DIRC Forward TOF The PANDA Detector

Particle Identification dE/dX by TPC PANDA PID Requirements: Particle identification essential for PANDA Momentum range 200 MeV/c – 10 GeV/c Different process for PID needed PID Processes: Cherenkov radiation: above 1 GeV Radiators: quartz, aerogel, C4F10 Energy loss: below 1 GeV Best accuracy with TPC Time of flight Start detector: fibre detector Electromagnetic showers: EMC for e and γ Forward ToF Particle IDentification in PANDA

Detection of Internally Reflected Cherenkov light A Textbook Example: the BABAR DIRC Detection of Internally Reflected Cherenkov light Different Cherenkov angles give different reflection angles The task is to separate p’s and K’s in the range: 0.7<p< 3.5 GeV/c The Barrel DIRC Measure angle of Cherenkov cone Transmitted by internal reflection (typ. # light bounces = 300) Detected by PMTs

A Textbook Example: the BABAR DIRC The Barrel DIRC

The Barrel DIRC@PANDA (I) Babar Design for PANDA 96 Fused silica bars, 2.6m length Water tank & 7000 PMTs K eff. K eff. Fulfills physics requirements... Number of required photon detectors Water tank Overall size of DIRC Bar-size uncertainties Chromatic uncertainty  miss-id.  miss-id. The Barrel DIRC

The Barrel DIRC@PANDA (II) Smaller sized photon-detector with focusing optics: Get rid of water tank with different imaging (reduced background, maintenance) Focusing removes bar-size uncertainty in the focusing plane: Improved geometrical (Cherenkov angle) resolution Smaller detectors have better transit time spread Improved timing resolution (sDt = 100 .. 200 ps) Reduces chromatic uncertainty The Barrel DIRC

3D imaging X-Y and TOP [B. Ratcliff NIMA502(2003)211] Ultimate Focusing-TOP DIRC (t) 3D imaging X-Y and TOP [B. Ratcliff NIMA502(2003)211] X proximity focusing with wide bar Y focused by mirror Time-Of-Propagation Measurement A.Lehmann, Erlangen 2006 Photodetector requirements.... DT < 100ps DY~1-2 mm DX ~ 5 mm Single photon counting Efficiency (QE, gain, S/N) > 20% Magnetic field immunity 1.5T Effective area > 70% Operational Lifetime The Barrel DIRC

Quick summary on ongoing activities Many sub projects have started Radiator radiation hardness surface polishing Photon detector Gain and time resolution tests Coupling to radiator Three forward-endcap Cherenkov options Focussing disk (x-y image) TOP disk (x-t image) Proximity Imaging RICH liquid radiator + CsJ-photon det. tracking capabilities R&D around the DIRCs

….more about PID Detectors Central Tracker: TPC option Goal dp/p ~1% dE/dx resolution ~6% Challenges Space charge build-up Continuous sampling Particle IDentification in PANDA

Conclusions & Outlook Antiproton collisions with nuclei offer many opportunities to study strange baryon in cold nuclei Baryon-baryon interaction Weak decay Spectroscopy of baryonic atoms .... These studies are made possible by a unique combination of experimental facilities at FAIR  spectroscopy with Ge detectors  PANDA  antiproton beams Particle identification (PID) is an essential requirement for such a unique physics program. The DIRC detectors will play a key role A wide R&D program is ongoing Conclusions & Outlook

The PANDA Collaboration www-panda.gsi.de Conclusions & Outlook

….more about PID Detectors EMC Barrel and Endcaps Approx 16000 crystals LAAPDs readout Challenges High rate capability: 2 x 107 interactions/s High resolution & low threshold (10 MeV) Compact design: EMC inside solenoid Operation in magnetic field of ~ 2T Proto60 Particle IDentification in PANDA

….more about PID Detectors Central Tracker: ST option Total number of tubes - ~5000 Radial dimensions – 16-42cm Length – 1.5m Tube diameters – 10mm Tube wall material – Mylar, 30μm Anode wire – W/Re, 20μm Spatial resolution – σrφ≈150μm, σz≈3-10mm Gas filling – Ar+10%CO2 Gas absolute pressure – 2 bar Thickness - ~1% X0. more details in T. Stockmanns talk Particle IDentification in PANDA

….more about PID Detectors TOF system Low momentum kaons Scintillator fibers (START) ~2000 fibers placed in two rings  Readout with SiPMT Tof barrel (STOP) Time Resolution ~ 80ps 16 Slabs ~6 bars Particle IDentification in PANDA