Gregory McLaughlin, Vitali Sikirzhytski, Igor K. Lednev 

Slides:



Advertisements
Similar presentations
The most efficient STR loci in forensic genetics in population of central Poland R. Jacewicz, M. Jedrzejczyk, J. Berent Forensic Science International:
Advertisements

The importance of Guthrie cards and other medical samples for the direct matching of disaster victims using DNA profiling  D. Hartman, L. Benton, L. Morenos,
DNA profiling of trace DNA recovered from bedding
In situ silver nanoparticles synthesis in agarose film supported on filter paper and its application as highly efficient SERS test stripes  Ali Raza,
Flávia de Souza Lins Borba, Ricardo Saldanha Honorato, Anna de Juan 
The ideal subject distance for passport pictures
Kelsey E. Seyfang, Kahlee E. Redman, Rachel S. Popelka-Filcoff, K
Volatile organic compounds in polyethylene bags⿿A forensic perspective
Real time quantitative colourimetric test for methamphetamine detection using digital and mobile phone technology  Aree Choodum, Kaewalee Parabun, Nantikan.
K. Alkass, B.A. Buchholz, H. Druid, K.L. Spalding 
High-performance combination method of electric network frequency and phase for audio forgery detection in battery-powered devices  Maryam Savari, Ainuddin.
The effect of sodium fluoride on the stability of cyanide in postmortem blood samples from fire victims  J.L. McAllister, R.J. Roby, Barry Levine, David.
Chemical enhancement of fingermark in blood on thermal paper
A modified Raman multidimensional spectroscopic signature of blood to account for the effect of laser power  Gregory McLaughlin, Igor K. Lednev  Forensic.
Ethanol production by Candida albicans in postmortem human blood samples: Effects of blood glucose level and dilution  Daisuke Yajima, Hisako Motani,
Maximum flight velocity of blood drops in analysing blood traces
Detecting and collecting traces of semen and blood from outdoor crime scenes using crime scene dogs and presumptive tests  A.G. Skalleberg, M.M. Bouzga 
Piotr Adamowicz, Dariusz Zuba, Karolina Sekuła 
Előd Hidvégi, Péter Fábián, Zsuzsa Hideg, Gábor Somogyi 
A snapshot on NPS in Italy: Distribution of drugs in seized materials analysed in an Italian forensic laboratory in the period 2013–2015  Sara Odoardi,
A snapshot on NPS in Italy: Distribution of drugs in seized materials analysed in an Italian forensic laboratory in the period 2013–2015  Sara Odoardi,
Profiling counterfeit Cialis, Viagra and analogs by UPLC–MS
Rapid screening for detection and differentiation of detergent powder adulteration in infant milk formula by LC–MS  Manjun Tay, Guihua Fang, Poh Ling.
New perspectives in the use of ink evidence in forensic science: Part I. Development of a quality assurance process for forensic ink analysis by HPTLC 
Gowri Vijay Reesu, Nathan Lee Brown  Forensic Science International 
Inhwan Han  Forensic Science International 
Colour contrast in ballistic gelatine
Ballistic skin simulant
Comparing ballistic wounds with experiments on body simulator
An investigation into the behaviour of air rifle pellets in ballistic gel and their interaction with bone  G. Wightman, J. Beard, R. Allison  Forensic.
B. Rosario Campomanes-Álvarez, O. Ibáñez, F. Navarro, I. Alemán, M
Suspected clozapine poisoning in the UK/Eire, 1992–2003
Suspected clozapine poisoning in the UK/Eire, 1992–2003
Elemental analysis of glass by laser ablation inductively coupled plasma optical emission spectrometry (LA-ICP-OES)  Emily R. Schenk, José R. Almirall 
Előd Hidvégi, Péter Fábián, Zsuzsa Hideg, Gábor Somogyi 
The discrimination of automotive clear coats by pyrolysis-gas chromatography/mass spectrometry and comparison of samples by a chromatogram library software 
Forensic Science International
Comparison of latex body paint with wetted gauze wipes for sampling the chemical warfare agents VX and sulfur mustard from common indoor surfaces  Laura.
Differential Power Analysis as a digital forensic tool
Fluorescence imaging of petroleum accelerants by time-resolved spectroscopy with a pulsed Nd-YAG laser  Naoki Saitoh, Shigeki Takeuchi  Forensic Science.
Quantitative bloodstain analysis: Differentiation of contact transfer patterns versus spatter patterns on fabric via microscopic inspection  Yuen Cho,
Rory Simmons, Paul Deacon, Darren J. Phillips, Kevin Farrugia 
Janina Zięba-Palus, Marcin Kunicki  Forensic Science International 
An FTIR method for the analysis of crude and heavy fuel oil asphaltenes to assist in oil fingerprinting  Brenden J. Riley, Chris Lennard, Stephen Fuller,
Forensic classification of counterfeit banknote paper by X-ray fluorescence and multivariate statistical methods  Hongling Guo, Baohua Yin, Jie Zhang,
Martina Skenderović Božičević, Andreja Gajović, Igor Zjakić 
Can ⿿contamination⿿ occur in body bags
Combination of prostate-specific antigen detection and micro-Raman spectroscopy for confirmatory semen detection  Ilan Feine, Ron Gafny, Iddo Pinkas 
20 SNPs as supplementary markers in kinship testing
Development of a RNA profiling assay for biological tissue and body fluid identification  Kevin Wai Yin Chong, Yongxun Wong, Boon Kiat Ng, Zhonghui Thong,
Age prediction using the novel dual sjTREC probe assay
Efficiency of DNA IQ System® in recovering semen DNA from cotton swabs
Easy and fast procedure to isolate, purify and immortalize DNA fragments for allelic ladders construction  G. Burgos, T. Restrepo, A. Ibarra, A. Gaviria,
DNA typing of trace DNA recovered from different areas of sandals found at a homicide crime scene investigation: A comparative study  Samuel T.G. Ferreira,
S. Dangsriwan, P. Thanakiatkrai, W. Asawutmangkul, S. Phetpeng, T
The development of a forensic clock to determine time of death
Establishment of Italian national DNA database and the central laboratory: Some aspects  R. Biondo, F. De Stefano  Forensic Science International: Genetics.
Timothy J. Verdon, R. John Mitchell, Roland A.H. van Oorschot 
Sequencing of the highly polymorphic STR locus SE33
Skeletal reassociation from an illegal common grave of Argentina by using STR, miniSTR, and mtDNA analysis  Laura Catelli, Alicia Borosky, Carola Romanini,
Contamination when collecting trace evidence—An issue more relevant than ever?  Ines Pickrahn, Gabriele Kreindl, Eva Müller, Bettina Dunkelmann, Waltraud.
Automated addition of Chelex solution to tubes containing trace items
Introducing a latent variable approach for finding populations in a forensic DNA database  Maarten Kruijver  Forensic Science International: Genetics.
Is an increased drop-in rate appropriate with enhanced DNA profiling?
How degraded is our DNA? A review of single source live case work samples with optimal DNA inputs processed with the PowerPlex® ESI17 Fast kit  D. Moore,
An interstitial hypothesis for breast cancer related lymphoedema
Colombian results of the interlaboratory quality control exercise 2015
Improved performance for forensic casework: Extraction and isolation updates for the Maxwell® 16 instrument  M. Lindner, P.V. Mandrekar, J. Bessetti,
Steffen L. Lauritzen, Anjali Mazumder 
A.M. Ölçen, G. Filoğlu, H. Altunçul, S. Erdem, Ö. Bülbül 
Presentation transcript:

Circumventing substrate interference in the Raman spectroscopic identification of blood stains  Gregory McLaughlin, Vitali Sikirzhytski, Igor K. Lednev  Forensic Science International  Volume 231, Issue 1, Pages 157-166 (September 2013) DOI: 10.1016/j.forsciint.2013.04.033 Copyright © 2013 Elsevier Ireland Ltd Terms and Conditions

Fig. 1 Photograph of blood stains on various substrates (cotton, glass, tile denim and recovered blood). Forensic Science International 2013 231, 157-166DOI: (10.1016/j.forsciint.2013.04.033) Copyright © 2013 Elsevier Ireland Ltd Terms and Conditions

Fig. 2 Raman spectra of pure blood acquired using 406.7 (A), 457.9 (B), 488 (C), 514.5 (D), 647.1 (E) and 785 (F) nm excitations. Forensic Science International 2013 231, 157-166DOI: (10.1016/j.forsciint.2013.04.033) Copyright © 2013 Elsevier Ireland Ltd Terms and Conditions

Fig. 3 Raman spectrum of a blood stain on glass acquired using 406.7 (A), 457.9 (B), 488 (C), 514.5 (D), 647.1 (E) and 785 (F) nm excitations. For comparison, the black traces are the normalized spectra for the substrate reference. In F, the green trace is the normalized result of manual substrate contribution subtraction. (For interpretation of the references to color in the artwork, the reader is referred to the web version of the article.) Forensic Science International 2013 231, 157-166DOI: (10.1016/j.forsciint.2013.04.033) Copyright © 2013 Elsevier Ireland Ltd Terms and Conditions

Fig. 4 Raman spectrum of a blood stain on tile acquired using 406.7 (A), 457.9 (B), 488 (C), 514.5 (D), 647.1 (E) and 785 (F) nm excitations. For comparison, the cyan traces are the normalized spectra for the substrate reference. In F, the green trace is the normalized result of manual substrate contribution subtraction. (For interpretation of the references to color in the artwork, the reader is referred to the web version of the article.) Forensic Science International 2013 231, 157-166DOI: (10.1016/j.forsciint.2013.04.033) Copyright © 2013 Elsevier Ireland Ltd Terms and Conditions

Fig. 5 Raman spectrum of a blood stain on cotton acquired using 406.7 (A), 457.9 (B), 488 (C), 514.5 (D), 647.1 (E) and 785 (F) nm excitations. For comparison, the blue traces are the normalized spectra for the substrate reference. Forensic Science International 2013 231, 157-166DOI: (10.1016/j.forsciint.2013.04.033) Copyright © 2013 Elsevier Ireland Ltd Terms and Conditions

Fig. 6 Normalized stack plot Raman spectra for selected dilute blood and blood recovery experiments. The left panel is the raw spectrum, and the right panel is the result after subtraction of a reference spectrum for cotton. A–A′ is 2:1, B–B′ is 40:1, C–C′ is 60:1 (water:blood), and D–D′ is blood recovered from a blood stain on glass. (D and D′ spectra were manually baselined for representation). Forensic Science International 2013 231, 157-166DOI: (10.1016/j.forsciint.2013.04.033) Copyright © 2013 Elsevier Ireland Ltd Terms and Conditions

Fig. 7 Normalized stack plot of Raman spectra of a blood stain on denim. (A) Raw blood stain on denim, (B) Blank denim spectrum (C) Blank cotton spectrum (D) Pure blood reference (E) Baselined blood stain spectrum (F) Subtraction result after eliminating the denim contribution. Forensic Science International 2013 231, 157-166DOI: (10.1016/j.forsciint.2013.04.033) Copyright © 2013 Elsevier Ireland Ltd Terms and Conditions

Fig. 8 The Raman spectra of blood on different substrates with the fitted spectroscopic signature of blood (green lines). For comparison the same fitting procedure was performed for the Raman spectrum for pure cotton. (For interpretation of the references to color in the artwork, the reader is referred to the web version of the article.) Forensic Science International 2013 231, 157-166DOI: (10.1016/j.forsciint.2013.04.033) Copyright © 2013 Elsevier Ireland Ltd Terms and Conditions