La prioritÉ des op Érations

Slides:



Advertisements
Similar presentations
Lalgèbre Diviser les polynômes Multiplier les polynômes Soustraire les polynômes Additionner les polynômes La vocabulaire des polynômes.
Advertisements

Prepositions. PREPOSITIONS: *sous - under *devant - in front of *sur - on *derrière- behind *dans - in *à côté de - next to *à gauche de - to the left.
À peu près/environ. about/approximately Cest tout pour aujourdhui.
ORDER OF OPERATIONS LESSON 2a.
Exponents, Parentheses, and the Order of Operations.
Calcul mental multiplications et divisions par multiplications par 0,1 0,01 0,001...
Estimer La somme et la différence de grands nombres.
Collège Jean Monnet ACTIVITES MENTALES Question 1 Quel nombre obtient- on en multipliant 9 par 7 ?
1.AA 1. 2 times as big as France 2. 4 times as big as France 3. 8 times as big as France 4. more than 10 times as big as France Q37- Canada is : Solution.
Algebraic Fractions and Rational Equations. In this discussion, we will look at examples of simplifying Algebraic Fractions using the 4 rules of fractions.
Dividing Rational Expressions Use the following steps to divide rational expressions. 1.Take the reciprocal of the rational expression following the division.
RATIONAL EXPONENTS Assignments Assignments Basic terminology
Vocabulary Section 1-2 Power: has two parts a base and an exponent.
2 pt 3 pt 4 pt 5pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2pt 3 pt 4pt 5 pt 1pt 2pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4pt 5 pt 1pt Prime Factorization Factors & Divisibility.
Orders of Operations Section 1.6. Objective Perform any combination of operations on whole numbers.
In multiplying rational expressions, we use the following rule: Dividing by a rational expression is the same as multiplying by its reciprocal. 5.2 Multiplying.
Multiplying a Dividing Rational Expressions Lesson 8.4 Algebra II.
1.2 Algebraic Expressions 8/24/12. Vocabulary Variable: A letter used to represent one or more numbers Exponent: The number or variable that represents.
Инвестиционный паспорт Муниципального образования «Целинский район»
Use the Distributive Property to: 1) simplify expressions 2) Solve equations.
(x – 8) (x + 8) = 0 x – 8 = 0 x + 8 = x = 8 x = (x + 5) (x + 2) = 0 x + 5 = 0 x + 2 = x = - 5 x = - 2.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Chapter 8 – Exponents and Exponential Functions 8.1/8.3 – Multiplication and Division Properties of Exponents.
1-2 Order of Operations and Evaluating Expressions.
THE REAL NUMBERS College Algebra. Sets Set notation Union of sets Intersection of sets Subsets Combinations of three or more sets Applications.
Evaluating Integer Expressions Friday, December 25, 2015.
Aim: How do we work on the expression with negative or zero exponent?
Table of Contents Dividing Rational Expressions Use the following steps to divide rational expressions. 1.Take the reciprocal of the rational expression.
Multiplication Properties of Exponents. To multiply two powers that have the same base, you ADD the exponents. OR.
(x+2)(x-2).  Objective: Be able to solve equations involving rational expressions.  Strategy: Multiply by the common denominator.  NOTE: BE SURE TO.
Warm Up Simplify.  3   15  (9 + 2)  7  5
Write as an Algebraic Expression The product of a number and 6 added to a.
Equations Solving Equations. How does one find a solution? Use Inverse Operations. Addition  Subtraction Multiplication  Division Square  Square.
2.3 Multiplying Rational Numbers The product of numbers having the same sign is positive. The product of numbers having different signs is negative.
3 + 6a The product of a number and 6 added to 3
ORDER OF OPERATIONS LESSON 2.
Mental Math Everyone Take out a sheet of paper and Number your page = = = = = =
Music You buy a used guitar for $50. You then pay $10 for each of 5 guitar lessons. The total cost can be found by evaluating the expression 
Laws of Exponents Prepared by: Ruby Rose Concepcion III- B Math.
照片档案整理 一、照片档案的含义 二、照片档案的归档范围 三、 卷内照片的分类、组卷、排序与编号 四、填写照片档案说明 五、照片档案编目及封面、备考填写 六、数码照片整理方法 七、照片档案的保管与保护.
공무원연금관리공단 광주지부 공무원대부등 공적연금 연계제도 공무원연금관리공단 광주지부. 공적연금 연계제도 국민연금과 직역연금 ( 공무원 / 사학 / 군인 / 별정우체국 ) 간의 연계가 이루어지지 않고 있 어 공적연금의 사각지대가 발생해 노후생활안정 달성 미흡 연계제도 시행전.
Vocabulary Variable Constant Algebraic Expression Evaluate.
Жюль Верн ( ). Я мальчиком мечтал, читая Жюля Верна, Что тени вымысла плоть обретут для нас; Что поплывет судно громадней «Грейт Истерна»; Что.
TP ISN Terminale S Instruction if (Programmation Java)
RATIONAL EXPONENTS Assignments Assignments Basic terminology
Les propriétés de l’air
Algebra 1 Notes: Lesson 2-2 Rational Numbers
L’infinitif au négatif
1MPES2 – Two-Step Equations
Les Tables de Multiplications
MATRIX GRANT PROJECT Chapter2 Lesson4 Algebra Order of Operation
RATIONAL EXPONENTS Basic terminology Substitution and evaluating
Franck Pourcel Premier chef d’orchestre français
Multiplication and Division by Powers of Ten
ORDER OF OPERATIONS BEMDAS. 1. Brackets - ( ) or [ ]
Informal document No. GRSG-97-31
Question 1 12 x 99 = ?.
©2009 – Not to be sold/Free to use
Section 8-2: Multiplying and Dividing Rational Expressions
Multiplying Rational Numbers 2-3
قواعد الاختبارات التحصيلية
In the power 52 , the base is In the power 52 , the base is
1.3 Solving Linear Equations
RATIONAL EXPONENTS Basic terminology Substitution and evaluating
Test. essai.
Calcul réfléchi 2 Multiplier par 5.
Solving Linear Equations
Exponents and Order of Operations
Multiplying and Dividing Rational Expressions
Multiplying and Dividing Decimals
Presentation transcript:

La prioritÉ des op Érations

Les Règles #1: On effectue les operations entre parentheses. #2: On evalue les puissances (exposants) #3) On divise et multiplie dans l’ordre ou elles se presentent (de gauche a droite) #4) On additionne et on soustrait dans l’ordre ou elles se présentent (de gauche a droite)

PEDMAS P: Parentheses E: Exposants (les puissances) D: Division (de gauche a droite) M: Multiplication (de gauche a droite) A: Addition (de gauche a droite) S: Soustraction (de gauche a droite)

EXEMPLE Évalue l’expression: 18 + 36 ÷ 32 Évalue les exposants (regle# 2) = 18 + 36 ÷ 9 On divise de gauche a droite (regle#3) 18 + 36 ÷ 9 = 18 + 4 On additionne (de gauche a droite) = 22

Exemple 2 Evalue les exposants (regle#2) Trouve la reponse: 52 x 24 = 25 x 16-Multiplication (regle#3) =400

Exemples Essaie 16-4÷ 2= 7x (4+8)= 4x7-2+1= 4x (7-2 +1)= 200-200÷ 20=

Reponses 14 95 27 24 190 25

Exemple 3 Les exposants (regle#2) Soustraction (regle#4) Evalue: 289 – (3 X 5)2 Les parentheses (regle#1) 289-(15)2 = 289-(15)2 Les exposants (regle#2) = 289-225 Soustraction (regle#4) =64

Exemple 4 EVALUE: 8 + (2 x 5) x 34 ÷ 9 = 8 + (10) x 34 ÷ 9 (parentheses-regle#1) = 8 + (10) x 81 ÷ 9 (exposants-regle#2) = 8 + 810 ÷ 9 (mult/div-regle#3) = 8 + 90 (addition-regle #4) =98

Essayer 1) 32 x 43 2) 27 – 256 ÷ 43 3) 9 x (5 + 3)2 – 144 4) 7 + 3 x 24 ÷ 6

Solution #1 32 x 43 = 9 x 64 = 576 Les Exposants La Multiplication

Solution #2 27 – 256 ÷ 43 = 27 – 256÷64 = 27 – 4 = 23

Solution #3 9 x (5 + 3)2 – 144 = 9 x (8)2 – 144 = 9 x 64 – 144 = 576 – 144 = 432

Solution #4 7 + 3 x 24 ÷ 6 = 7 + 3 x 16 ÷ 6 = 7 + 48 ÷ 6 = 7 + 8 = 15

L’Ordre des Operations-2 1) (10 ÷ 5) × 25 - 14 2) 5 × 15 + (10 × 5) 3) (13 × 20) + 2 + 2 × 20 + 12 + 15 4) ( 5 x 6)2 ÷ 9 + (6 ÷ 3)3

Solution #1 (10 ÷ 5) × 25 – 14 (2) x 25 – 14 50 – 14 36

Solution #2 5 × 15 + (10 × 5) 5 x 15 + 50 75 + 50 125

Solution #3 (13 × 20) + 2 + 2 × 20 + 12 + 15 260 + 2 + 2 x 20 + 12 + 15 260 + 2 + 40 + 12 + 15 262 + 40 + 12 + 15 302 + 12 + 15 314 + 15 329

Solution #4 ( 5 x 6)2 ÷ 9 + (6 ÷ 3)3 (30)2 ÷ 9 + (6 ÷ 3)3 (30)2 ÷ 9 + (2)3 900 ÷ 9 + (2)3 900 ÷ 9 + 8 100 + 8 108

Devoirs 1 A) 3x2+9 B) 7x6+4x2 C) (4+3x2)-10 D) (4+32)x5 E) 4x2+3x6

Solutions-Devoirs 1 15 50 65 2

Devoirs 2 c) 52 -(19-3x5)2 (7-2)2 –(7x4-12) 6x4-11 8x5+6-(2x19) a) 6x3+3x7 6x4-11 b) 64 ÷ 4+(2x4) 8x5+6-(2x19) c) 52 -(19-3x5)2 (7-2)2 –(7x4-12)

Devoirs 2-Solutions 6x3+3x7 6x4-11 =3

Devoirs-Solutions-b 64 ÷ 4+(2x4) 8x5+6-(2x19) =3

Devoirs-Solutions C 52 -(19-3x5)2 (7-2)2 –(7x4-12) =1

Devoirs 3 Mets les parentheses! 4+6x3÷15-4=2 2x3+6 ÷ 3+1=7

Solutions-Mets les parentheses A) (4+6x3) ÷ (15-4)=2 B) 2x(3+6) ÷ 3+1=7 C) 5x4+3- (1+2x6)=10 D) (52-42)x(3+1) ÷6=6 E) 3x(5+6-1) ÷5=6 F) 5x4 ÷(22+6)+11x2=24

Devoirs 4 1x10+22÷ 11+10x4+11+10-2 ÷2 7+3-1+6x3+108÷9+66÷6+11x8

Solutions-Q#1 a) 1x10+22÷ 11+10x4+11+10-2 ÷2 =10+2+40+11+10-2 ÷2 =72

Solutions-Q#2 7+3-1+6x3+108÷9+66÷6+11x8 =7+3-1+18+12+11+88 =138

Solutions-Q#3 10x6+120÷12+3x4+8+10-5+5÷1 =60+10+12+8+10-5+5 =100

Solutions-Q#4 3x2+6+2-2÷1+30÷3+2x11 =6+6+2-2+2+10+22 =44

Solutions-Q#5 9x7+3-1+121÷11+16÷8+4x11+3 =63+3-1+11+2+44+3 =125

Solutions-feuille1 1) 7 2) -37 3) -9 4) -15 5) -29 6) 5 7) -6

Solutions-feuille1 8) -72 9) 4 10) 5

Quizlet A) 5-(3-4)= B) (5-7)-(3-4)= C) -3(-4)-(5-7)= D)(3)(2)-(3+5)= F) (4-3)-2(3-4)= G) 4(-2)-(-8+4)=

Quizlet-reponses A) 6 B) -1 C) 14 D) -2 E) 8 F) 3 G) -4