Computational Thermodynamics

Slides:



Advertisements
Similar presentations
Acero 2000 PHYSICAL METALLURGY AND THERMAL PROCESSING OF STEEL
Advertisements

Phase Diagrams Continued
LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON TO GO BACK, PRESS ESC BUTTON TO END LEFT CLICK OR PRESS SPACE BAR TO ADVANCE, PRESS P BUTTON.
Chapter 9: Phase Diagrams
S. Kugler: Lectures on Amorhous Semiconductors 1 Preparation.
Chapter Outline: Phase Diagrams
McGill Nanotools Microfabrication Processes
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
Byeong-Joo Lee Byeong-Joo Lee Scope CVD 1.Too much changeable results depending on the condition.
Chap.1. Phase and Phase Diagram Phase( 상 ): Any material system usually contains regions which exhibit same properties such as specific volume, composition.
Byeong-Joo Lee cmse.postech.ac.kr. Byeong-Joo Lee cmse.postech.ac.kr Scope Fundamentals 1.Free Surfaces vs. Grain Boundaries vs. Interphase Interfaces.
Thermodynamics Basic Review of Byeong-Joo Lee Microstructure Evolution
Microstructure and Phase Transformations in Multicomponent Systems
Fabrication and Properties of MSMA Thin Films Hierarchical Manufacturing and Modeling for Phase Transforming Active Nanostructures D.C. Lagoudas a, K.
Byeong-Joo Lee Byeong-Joo Lee Interfacial Reactions – References Prediction of Interface Reaction.
Byeong-Joo Lee cmse.postech.ac.kr Semi-Empirical Atomistic Simulations in Materials Science and Engineering Byeong-Joo Lee Pohang University of Science.
Thin Film & Battery Materials Lab. National Research Lab. Kangwon Nat’l Univ. Cycle performance of Si-based Thin Film Anodes for Li-ion Batteries Kwan-Soo.
Byeong-Joo Lee Computational Thermodynamics Byeong-Joo Lee Computational Materials Science & Engineering Lab. Pohang University.
Byeong-Joo Lee cmse.postech.ac.kr Byeong-Joo Lee POSTECH - MSE Interfaces & Microstructure.
Electro-Ceramics Lab. Electrical Properties of SrBi 2 Ta 2 O 9 Thin Films Prepared by r.f. magnetron sputtering Electro-ceramics laboratory Department.
CHARACTERIZATION OF NATURAL AND ENGINEERED NANOPARTICLES: SHAPE, SIZE AND CHEMICAL COMPOSITION Lucia Manangon
Thermodynamic data A tutorial course Session 2: unary data (part 2) Alan Dinsdale “Thermochemistry of Materials” SRC.
Thermodynamic data A tutorial course Session 6: Modelling Surface Tension Alan Dinsdale “Thermochemistry of Materials” SRC.
Euromet 2006 Influence of impurities on the melting temperature of Aluminum Pr. B. Legendre & Dr S. Fries EA 401.
Teacher Notes This PPT was revised June 10, This PPT is a review on the atomic characteristics of the four main essential elements hydrogen, carbon,
Byeong-Joo Lee Multi-component Heterogeneous System Byeong-Joo Lee POSTECH - MSE
2-D Nanostructure Synthesis (Making THIN FILMS!)
MIT Microstructural Evolution in Materials 12: Nucleation
AMSE509 Atomistic Simulation
S2 SCIENCE CHEMICAL REACTIONS
Metal or non-metal? iron (Fe) iodine (I) antimony (Sb) copper (Cu)
Materials Engineering
Thin film technology, intro lecture
Chapter 5 Phase Equilibria
Introduction Thin films of hydrogenated amorphous silicon (a-Si:H) are used widely in electronic, opto-electronic and photovoltaic devices such as thin.
Metals & Alloys.
KS4 Chemistry Metallic Bonding.
Chapter 9: Phase Diagrams
Chapter 11: Phase Diagrams
Introduction to Materials Science and Engineering
Chemical Reactions and Balancing Equations (I)
© 2016 Cengage Learning Engineering. All Rights Reserved.
Calorimetric Studies of Fe/Pt Multilayer Thin Films
Katsuyo Thornton,1 Paul Mason,2 Larry Aagesen3
Thermodynamics and Phase Diagrams
KS4 Chemistry Metallic Bonding.
THE TRANSITION METALS.
Hydrogen Bonding O O Intermolecular forces of attraction between
Phase diagrams by thermodynamic calculations
Growth Kinetics Byeong-Joo Lee Microstructure Evolution POSTECH - MSE
Molecular Dynamics Study on Deposition Behaviors of Au Nanocluster on Substrates of Different Orientation S.-C. Leea, K.-R. Leea, K.-H. Leea, J.-G. Leea,
CHAPTER 8 Phase Diagrams 1.
CHAPTER 8 Phase Diagrams 1.
Diffusion Byeong-Joo Lee Phase Transformations POSTECH - MSE
IC AND NEMS/MEMS PROCESSES
Thermodynamic Properties
CHAPTER 8 Phase Diagrams 1.
Introduction to the Phase Diagrams MME 293: Lecture 05
MATERIALS SCIENCE Materials science investigates the relationships between the structures and properties of materials.
Chapter 10: Phase Diagrams
Growth Behavior of Co on Al(001) substrate
Phase diagrams of pure substances
IE-114 Materials Science and General Chemistry Lecture-10
Phase Diagram.
Multi-component Heterogeneous System
The Periodic Table Part I – Categories of Elements
Katsuyo Thornton,1 Paul Mason,2 Larry Aagesen3
Presentation transcript:

Computational Thermodynamics Byeong-Joo Lee Computational Materials Science & Engineering Lab. Pohang University of Science & Technology

Structure Evolution Process Condition Materials Property R&D in Materials Science and Engineering Structure Evolution Process Condition Materials Property Research Type I : experiments first, then thinking Research Type II: think first, then do experiments

Thermodynamic Modelling

Lattice Stability

Regular Solution vs. Quasi-Chemical Model

Thermodynamic Assessment – Cr-Ni Binary System LfccCr,Ni = 8030 – 12.8801·T + (33080 – 16.0362·T)(1-2XNi) LbccCr,Ni = 17170 – 11.8199·T + (34418 – 11.8577·T)(1-2XNi) LliqCr,Ni = 318 – 7.3318·T + (16941 – 6.3696·T)(1-2XNi) B.-J. Lee, 1992

Thermodynamic Assessment – Fe-Cr-Ni Ternary System B.-J. Lee 1993

Thermodynamic Parameters (Fe,Cr,Mo)(Va,B,C,N)

Thermodynamic Modeling – Gibbs Energy For a Phase with Formula Unit, (M1,M2,…,Mi,…)a(Va,C,N)c

Thermodynamic Modeling – Gibbs Energy For a Phase with Formula Unit, (M1,M2,…,Mi,…)a(Va,C,N)c

Thermodynamic Database for Steels – TCFe2000 → TCFe2 → TCFe3 Fe-Cr-Ni-Mo-Mn-Si-C-N +Nb-Ti-V-W-Al-Co-Cu-B-O-P-S 8C2 = 28 Binary Systems 8C3 = 56 Ternary Systems 19C2 = 171 Binary Systems 19C3 = 969 Ternary Systems

Solution Models - liquid and fcc Fe-C alloys

Solution Model - liquid and fcc Fe-C alloys fcc : (Fe)1(Va,C) 1 Liquid : (Fe,C) Ternary (Fe,Mn)a(Va,C) c

Applications of Computational Thermodynamics

Thermodynamic Calculation – Practical Steels

Thermodynamic Calculation – Application to Alloy Design Computational Thermodynamics의 적용 분야 Structural Materials (Steel, Solder, Al-, Ti-, Ni-, Mg-alloys), Semiconducting Materials, Ceramic Materials, Hydrogen Storage Materials, CVD process 등 열역학이 지배하는 모든 물질계

Thermodynamic Calculation – Application to Alloy/Process Design AB1: 0.1C-5MN-7Al AB2: 0.2C-4Mn-6.6Al AB3: 0.3C-3.5Mn-6Al AB4: 0.4C-3.5Mn-5.8Al AB5: 0.5C-3Mn-4.9Al AB6: 0.3C-4Mn-7.3Al-0.05Ti

Thermodynamics Assessment - Na-Al-H system

Assessment of thermodynamic properties in the Li-Al-H ternary system

Driving force of CVD Deposition ※ Example: Deposition of Silicon SiH4 + 2Cl2 = Si + 4HCl

Interfacial Reactions

Interfacial Reaction between Cu and Various Solder Experimental Observation    ▶ Cu/Sn : Cu6Sn5    ▶ Cu/Sn-Pb eutectic : Cu6Sn5    ▶ Cu/Sn-Ag eutectic : Cu6Sn5    ▶ Cu/Sn-Zn eutectic : CuZn_γ    ▶ Cu/Sn-In eutectic : Cu2(Sn,In) or Cu2In3Sn

Application to Solder/Substrate Interfacial Reactions – Cu/Sn Reaction

Application to Solder/Substrate Interfacial Reactions – Cu/Sn Reaction

Application to Thin Film Reactions – Metal/Si Reaction

Application to Thin Film Reactions – Metal/Si Reaction Sample Preparation Heat Treatment Measurement Amorphous First Silicide ref. crystal (111) triode d.c. sputtering bilayer (Ti: 95,400nm) isothermal (30min at 500oC) XRD/TEM - Ti5Si3 & TiSi 50 electron-gun deposition bilayer (Ti: 300nm) 120min at 500oC RBS aTiSi & TiSi2 51 polycrystal magnetron S-gun sputtering bilayer (Ti: 100nm) (40min at 600oC) XRD TiSi & TiSi2 52 <100> evaporation bilayer (Ti:100nm) (30min at 750oC) RBS/XRD 53 amorphous or <100> bilayer (Ti: 90nm) (20min at 450oC) Backscattering Spectroscopy TiSi 54 electron-beam evaporation bilayer (Ti: 3nm) (30min at 600oC) TEM 55 (100) conventional HV sputtering bilayer (Ti: 30nm) (60min at 650oC) RBS/TEM TiSi2 (C49) 56 electron-gun evaporation bilayer (Ti: 140nm) (120min at 550oC) RBS/XRD/TEM bTiSi2 57 trilayer (Ti: 10~100nm) (~300s at 560oC) yes SSA Ti5Si3 45 sputter-deposition a-Si/Ti/Si trilayer (Ti: 23nm) (60min at 500oC) TEM/RBS 58 sputter deposition bilayer (Ti: 25~35nm) (30min at 460oC) HRTEM/EDS 59 UHV e-beam evaporation a-Si/Ti/Si trilayer (Ti: 30nm) (30min at 450oC) in-situ RHEED /HRTEM cTi5Si3 60 poly Si rf sputtering bilayer (Ti: 55nm) heating (10oC/m) to 510oC XTEM/STEM 61 magnetron sputtering bilayer (Ti: 32,51nm) heating (15oC/min) to approx. 800oC IR-abs spect. XRD/resistivity 62 bilayer (Ti: 32,46nm) heating (3,20oC/s) in-situ XRD Ti5Si3/Ti5Si4 63

Application to Thin Film Reactions – Metal/Si Reaction

Application to Thin Film Reactions – Metal/Si Reaction

Application to Interfacial Reactions – Metal/Si Reaction

Thermodynamics Nano Materials Eunha Kim Inyoung Sa Byeong-Moon Lee and Byeong-Joo Lee Computational Materials Science & Engineering Lab. Pohang University of Science & Technology, Korea

Curvature Effect – Capillary Pressure System condition T = constant Vα = Vβ = V = constant @ equilibrium

Curvature Effect – Capillary Pressure Effect on Melting Point of Nano Particle

Melting points of Gold Nano Particles: B-J Lee, 2009

Melting points of Nano Particles: B-J Lee, 2009 Ni Pt Au W Mg Pt

Melting points of Nano Wires: B-J Lee, 2009 Ni Pt Au Mg W Pt

Motivation - in Collaboration with M.-H. Jo, POSTECH

Vapor-Liquid Liquid-Solid Reactions during the VLS Process SiH4 + GeH4 + H2 ② ① Vapor-Liquid Liquid-Solid

Vapor-Liquid Liquid-Solid Reactions during the VLS Process 200 torr SiH4 + GeH4 + H2 ② ① ① ② 200 torr 400 oC Vapor-Liquid Liquid-Solid

VLS Growth of Nanowires - GeSi Nanowires

Size dependence of SiGe nanowire composition

Size dependence of SiGe nanowire composition CALPHAD (2008)

Interfacial Phenomena – Segregation (Guttmann, Butler/Tanaka) Assume a one atomic layer surface phase and consider equilibrium between bulk and surface where ωi is the molar surface area Assume ωi = ωj = … = ω

Calculation of Surface Tension of Liquid Alloys

Calculation of Surface Segregation in Solid Alloys

Computational Thermodynamics as Materials Genome Computational Thermodynamics + First-Principles Calculation

Application to Metal/Ceramics Interfacial Reactions – Ti/Al2O3 Reaction

Application to Metal/Ceramics Interfacial Reactions – Ti/Al2O3 Reaction

Phase Field Simulation of γ→α transformation in steels Wetting angle : 36o Wetting angle : 120o Fe - 0.5% Mn – 0.1% C, dT/dt = 1 oC/s from SG Kim, Kunsan University

Computational Thermodynamics Summary Computational Thermodynamics Calculation of Multi-component Phase Diagrams Interfacial Reactions – Metal/Liquid Solder, Metal/Ceramics Thin Films Reactions – Metal/Silicon Thermodynamics of Nano Materials – Capillarity Effect