Fatty Acid Oxidation and Ketone Bodies

Slides:



Advertisements
Similar presentations
Lipid Metabolism Remember fats?? Triacylglycerols - major form of energy storage in animals Your energy reserves: ~0.5% carbs (glycogen + glucose) ~15%
Advertisements

Lipids Metabolism. Fatty acids TAG Complete oxidation of fatty acids to CO2 & H2O: 9 Kcal/gram of fat Fatty acids: are stored in adipose tissue, in the.
Fatty acid Catabolism (b-oxidation)
 It can be divided into 3 processes: 1)Biosynthesis of glycerol. 2)Biosynthesis of fatty acids. 3)Biosynthesis of the triacylglycerol.  It occurs in.
LIPOLYSIS: FAT OXIDATION & KETONES BIOC DR. TISCHLER LECTURE 33.
Fatty Acid Oxidation and Ketone Bodies Medical Biochemistry Lectures #47 and #48.
Integration & Hormone Regulation Integration Branchpoints in metabolism where metabolites can go several directions 1. Glucose 6-phosphate Energy needed.
OXIDATION OF FATTY ACIDS
Synthesis of Triglycerides
Introduction  lipids are a good source of energy as 1 gm supplies 9.1 calories, which is over double that supplied by carbohydrates or protein.  Dietary.
Welcome to class of Lipid metabolism Dr. Meera Kaur.
VLDL formation Apolipoprotien B-100 has a repeating  -helix/  -sheet structure: Lipids are packaged as apolipoprotein B-100 is being synthesized: From.
1 Metabolic Pathways for Lipids. Ketogenesis and Ketone Bodies. Fatty Acid Synthesis.
Chapter 16 (Part 2) Fatty acid Catabolism (  -oxidation)
Lipid Metabolism 1: Overview of lipid transport in animals, fatty acid oxidation, ketogenesis in liver mitochondria Bioc 460 Spring Lecture 35 (Miesfeld)
1 Fatty Acid Metabolism. 2 Free Energy of Oxidation of Carbon Compounds.
1 Oxidation of Fatty Acids. Digestion of Triacylglycerols Beta-Oxidation of Fatty Acids ATP and Fatty Acid Oxidation.
Oxidation of Fatty Acids
Section 7. Lipid Metabolism
Ketogenesis & Ketolysis
KETONE BODY METABOLISM Dr.Siddiqui Abdulmoeed Associate Professor of Biochemistry College of Medicine Al-jouf University.
Generation and Storage of Energy
Fatty acid oxidation 3 steps to break down fatty acids to make energy 1.Fatty acid must be activated: bond to coenzyme A 2.Fatty acid must be transported.
Oxidation of Fatty Acids. BIOMEDICAL IMPORTANCE Oxidation in – Mitochondria Biosynthesis in – Cytosol Utilizes NAD + and FAD as coenzymes generates ATP.
FATTY ACID OXIDATION. OBJECTIVES FATTY ACID OXIDATION Explain fatty acid oxidation Illustrate regulation of fatty acid oxidation with reference to its.
Fatty Acid Metabolism. Why are fatty acids important to cells? fuel molecules stored as triacylglycerols building blocks phospholipids glycolipids precursors.
Oxidation and biosynthesis of fatty acids
Fatty acid catabolism 1.Digestion, Mobilization, and Transport of Fatty acids  Oxidation 3. Ketone Bodies.
Ketone body formation and utilisation  Acetoacetate,  -hydroxy butyrate and acetone are collectively called as ketone bodies.  The process of formation.
Regulation of Cellular respiration and Related pathways.
23-1 Principles and Applications of Inorganic, Organic, and Biological Chemistry Denniston,Topping, and Caret 4 th ed Chapter 23 Copyright © The McGraw-Hill.
Biochemistry: A Short Course Second Edition Tymoczko Berg Stryer CHAPTER 27 Fatty Acid Degradation.
Sources pof energy in fasting state In adipose tissue: In fasting state, the stored TAG will be the major source of energy. -Stored TAG in adipose tissue.
LECTURE 4 Oxidation of fatty acids Regulation of Lipid Breakdown
Fatty Acid oxidation Dr. Sooad Al-Daihan Biochemistry department.
* Lipid Biosynthesis - These are endergonic and reductive reactions, use ATP as source of energy and reduced electron carrier usually NADPH as reductant.
Metabolism of dietary lipids Biochemistry Department.
Metabolism of dietary lipids Biochemistry Department.
LECTURE 10 Introduction to lipid metabolism and oxidation of fatty acids I V. SRIDEVI
Hormonal regulation of lipid metabolism
Oxidation of Fatty Acid
Metabolic Pathways for Lipids.
Beta-Oxidation of Fatty acids
Biochemistry department
24.2 Oxidation of Fatty Acids
OXIDATION OF FATTY ACIDS
Beta Oxidation of Fatty Acids PROF. S. KAJUNA
Ketogenesis (Biosynthesis of ketone bodies)
Metabolism of ketonе bodies
September 12 Chapter 24 G&G Fatty acid catabolism
Fatty acid synthesis (Lipogenesis & Lipolysis)
METABOLISM OF LIPIDS: SYNTHESIS OF FATTY ACIDS
FATTY ACID BIOSYNTHESIS
Triacylglycerols Are Hydrolyzed by Cyclic AMP-Regulated Lipases
Normal And Abnormal Cardiac Muscle Metabolism
UNIT 12 CS BASIC CONCEPTS OF METABOLISM
Lipid Metabolism.
Lipid Catabolism.
Kshitiz Raj Shrestha Lecturer, Biochemistry
Prof. Dr. Zeliha Büyükbingöl
Ketone bodies metabolism (Ketogenesis & Ketolysis)
24.5 Fatty Acid Synthesis When the body has met all its energy needs and the glycogen stores are full, acetyl CoA from the breakdown of carbohydrates and.
Metabolism of the lipids
Chapter Twenty-One Lipid Metabolism.
Lipids.
ATP and Energy Pathways
Dr. Diala Abu-Hassan, DDS, PhD
Chapter Twenty-One Lipid Metabolism.
UNIT 4.2 METABOLISM OF FAT.
Presentation transcript:

Fatty Acid Oxidation and Ketone Bodies M.Prasad Naidu MSc Medical Biochemistry, Ph.D.Research Scholar

OXIDATION OF FATTY ACIDS: KETOGENESIS The initial event in the utilization of fat as an energy source is the hydrolysis of triacylglycerol by lipases

Epinephrine, norepinephrine, glucagon, and adrenocorticotropic hormone stimulate the adenylate cyclase of adipose cells, and thus cause lipolysis.

Fatty acids are synthesized and degraded by different mechanisms: Fatty acids are both oxidized to acetyl-CoA and synthesized from acetyl-CoA. Although the staring material of one process is identical to the product of the other, fatty acid oxidation is not the simple reverse of fatty acid biosynthesis. It is an entirely different process taking place in separate compartment of the cell. This allows each process to be individually controlled.

Fatty acids are synthesized and degraded by different mechanisms: Synthesis Oxidation Cytosol Intermediates are covalently linked to ACP Fatty acid synthase contain multienzyme activities Utilizes NADP+ as coenzyme Requires both ATP and bicarbonate ion Mitochondrial matrix Bonded to CoA Degradative enzymes are not associated Utilizes NAD+ and FAD as coenzymes Generates ATP Aerobic process

Step 1: Activation of fatty acids to acyl-CoA: Acyl-CoA synthetases are found in the endoplasmic reticulum, peroxisomes, and inside and on the outer membrane of mitochondria. Several acyl-CoA synthetases have been described, each for fatty acids of different chain length. R-COO- + CoA + ATP + H20 Acyl CoA + AMP + 2Pi + 2H+

Step 2: Long-chain fatty acids penetrate inner mitochondrial membrane as carnitine derivatives. Carnitine (ß-hydroxy-g-trimethylammonium butyrate) is widely distributed and abundant in muscle. Carnitine palmitoyltransferase-I, present in the outer mitochondrial membrane, catalyzes the following reaction:

Step 3: ß-oxidation of fatty acids involves successive cleavage with release of acetyl-CoA. Fatty acid oxidase are found in the mitochondrial matrix or inner membrane adjacent to the respiratory chain in the inner membrane.

Oxidation of unsaturated fatty acids occurs by a modified b-oxidation pathway:

  Oxidation of fatty acids produces a large quantity of ATP:  Palmitoyl CoA + 7 FAD + 7 NAD+ + 7 CoA + 7H2O  8 acetyl CoA + 7 FADH2 + 7 NADH + 7 H+ Oxidation of NADH - 3ATP '' FADH2 - 2 ATP '' Acetyl-CoA - 12 ATP   7 FADH2 yields 14 7 NADH yields 21 8 acetyl-CoA yields 96   Total 131 ATP   2 high energy phosphate bonds are consumed in the activation of palmitate   Net yield is 129 ATP or 129 X 51.6 = 6656 kJ

TRIACYLGLYCEROLS ARE HIGHLY CONCENTRATED ENERGY STORES The initial event in the utilization of fat as an energy source is the hydrolysis of triacylglycerol by lipases.

 -Reduced and anhydrous; Complete oxidation of fatty acids yields 9 kCal/g, where as, proteins and carbohydrates yield 4 kCal/g.   A 70 kg man: 100,000 kCal in triacylglycerols 25,000 kCal in proteins (muscles) 600 kCal in glycogen 400 kCal in glucose   -Triacylglycerols constitute about 11 kg of his total body weight. If this amount were stored in glycogen, his total body weight would be 55 kg greater. -In mammals, the major site of accummulation of triacylglycerols is the cytoplasm of adipose cells (fat cells). Droplets of triacylglycerol coalesce to form a large globule, which may occupy most of the cell volume.  -Adipose cells are specialized for the synthesis and storage of triacylglycerols and for their mobilization into fuel molecules that are transported to other tissues by the blood.

Peroxisomes oxidize very long chain fatty acids: Very long chain acyl-CoA synthetase facilitates the oxidation of very long chain fatty acids (e.g., C20, C22). These enzymes are induced by high-fat diets and by hypolipidemic drugs such as Clofibrate. ß-oxidation takes place and ends at octanoyl-CoA. It is subsequently removed from the peroxisomes in the form of octanoyl and acetylcarnitine, and both are further oxidized in mitochondria.

a- and w-oxidation of fatty acids are specialized pathways  a-oxidation i.e., removal of one carbon at a time from the carboxyl end of the molecule has been detected in brain tissue. It does not generate CoA intermediates and does not generate high- energy phosphates.  w-oxidation is a minor pathway and is brought about by cytochrome P450 in the endoplasmic reticulum. CH3 group is converted to a -CH2OH group that subsequently is oxidized to -COOH, thus forming a dicarboxylic acid. They subsequently undergo ß-oxidation and are excreted in the urine.

KETOGENESIS It occurs when there is a high rate of fatty acid oxidation in the liver These three substances are collectively known as the ketone bodies (also called acetone bodies or acetone). Enzymes responsible for ketone bodies formation are associated with mitochondria.

KETOGENESIS IS REGULATED AT THREE CRUCIAL STEPS: 1. Adipose tissue: Factors regulating mobilization of free fatty acids from adipose tissue are important in controlling ketogenesis 2. Liver: After acylation, fatty acids undergo ß- oxidation or esterified to triacylglycerol or ketone bodies. a. CPT-1 regulates entry of long-chain acyl groups into mitochondria prior to ß-oxidation. Its activity is low in the fed state, and high in starvation.

Fed state: Malonyl-CoA formed in the fed state is a potent inhibitor of CPT-1. Under these conditions, free fatty acids enter the liver cell in low concentrations and are nearly all esterified to acylglycerols and transported out as VLDL. Starvation: Free fatty acid concentration increases with starvation, acetyl-CoA carboxylase is inhibited and malonyl-CoA decreases releasing the inhibition of CPT-I and allowing more ß-oxidation. These events are reinforced in starvation by decrease in insulin/glucagon ratio. This causes inhibition of acetyl- CoA carboxylase in the liver by phosphorylation.

In short, ß-oxidation from free fatty acids is controlled by the CPT-I gateway into the mitochondria, and the balance of free fatty acid uptake not oxidized is esterified. 3. Acetyl-CoA formed from ß-oxidation of fatty acids is either oxidized in TCA cycle or it forms ketone bodies.

CLINICAL ASPECTS: 1. Carnitine-deficiency: can occur in newborn or preterm infants owing to inadequate biosynthesis or renal leakage. Losses can also occur in hemodialysis. Symptoms: hypoglycemia due to reduced gluconeogenesis resulting from impaired fatty acid oxidation, resulting in muscle weakness (Reye's syndrome).   Carnitine is supplemented with diet.

CLINICAL ASPECTS (cont): 2. Deficiency of Carnitine palmitoyltransferase-I and -II:   I Deficiency– affects only liver, resulting in reduced fatty acid oxidation and ketogenesis with hypoglycemia. II Deficiency– skeletal muscle Sulfonylureas (glyburide and tolbutamide) inhibit CPT and reduce fatty acid oxidation

CLINICAL ASPECTS (cont): 3. Inherited defects in the ß-oxidation lead to nonketotic hypoglycemia, coma, and fatty liver. Defects in long-chain 3-hydroxyacyl-CoA dehydrogenase, short-chain 3-hydroxyacyl-CoA dehydrogenase and 3-ketoacyl-CoA thiolase, HMG-CoA lyase are known. 4. Jamaican vomiting sickness: It is caused by eating unripe fruit of the akee tree which contains a toxin, hypoglycin, that inactivates medium-and short-chain acyl-CoA dehydrogenase, inhibiting ß-oxidation resulting in hypoglycemia with excretion of medium- and short- chain mono- and dicarboxylic acids.

CLINICAL ASPECTS (cont): 5. Dicarboxylic aciduria: It is characterized by excretion of C6-C10 w-dicarboxylic acids and by nonketotic hypoglycemia due to deficiency of medium-chain acyl-CoA dehydrogenase. This impairs ß-oxidation but increases w-oxidation which are then shortened by ß-oxidation to medium-chain dicarboxylic acids, which are excreted. 6. Refsum's disease: A rare neurologic disorder caused by accumulation of phytanic acid, formed from phytol, a constituent of chlorophyll. Phytanic acid contains a methyl group on carbon 3 that blocks ß-oxidation. Normally, an initial a-oxidation removes the methyl group, but person's with this disease have an inherited deficiency in a-oxidation.

CLINICAL ASPECTS (cont): 7. Zellweger's (cerebrohepatorenal) syndrome: Due to rare inherited absence of peroxisomes in all tissues. They accumulate C26-C38 polynoic acids in brain tissue owing to inability to oxidize long-chain fatty acids in peroxisomes. Ketoacidosis results from prolonged ketosis:   Ketonemia- higher than normal quantities of ketone bodies in blood  Ketonuria- higher than normal quantities of ketone bodies in urine.  Ketosis: the overall condition is called ketosis.