Unitarity Methods in Quantum Field Theory

Slides:



Advertisements
Similar presentations
Bill Spence* Oxford April 2007
Advertisements

Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & with Krzysztof.
Twistors and Pertubative Gravity including work (2005) with Z Bern, S Bidder, E Bjerrum-Bohr, H Ita, W Perkins, K Risager From Twistors to Amplitudes 2005.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Introduction to On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay Orsay Summer School, Correlations.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen; & with Krzysztof Kajda & Janusz Gluza.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
QCD at the LHC: What needs to be done? West Coast LHC Meeting Zvi Bern, UCLA Part 2: Higher Order QCD.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture IV.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture II.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Structure of Amplitudes in Gravity I Lagrangian Formulation of Gravity, Tree amplitudes, Helicity Formalism, Amplitudes in Twistor Space, New techniques.
Structure of Amplitudes in Gravity III Symmetries of Loop and Tree amplitudes, No- Triangle Property, Gravity amplitudes from String Theory Playing with.
Structure of Amplitudes in Gravity II Unitarity cuts, Loops, Inherited properties from Trees, Symmetries Playing with Gravity - 24 th Nordic Meeting Gronningen.
Twistors and Perturbative Gravity Emil Bjerrum-Bohr UK Theory Institute 20/12/05 Steve Bidder Harald Ita Warren Perkins +Zvi Bern (UCLA) and Kasper Risager.
Recurrence, Unitarity and Twistors including work with I. Bena, Z. Bern, V. Del Duca, D. Dunbar, L. Dixon, D. Forde, P. Mastrolia, R. Roiban.
Results in N=8 Supergravity Emil Bjerrum-Bohr HP 2 Zurich 9/9/06 Harald Ita Warren Perkins Dave Dunbar, Swansea University hep-th/0609??? Kasper Risager.
Beyond Feynman Diagrams Lecture 3 Lance Dixon Academic Training Lectures CERN April 24-26, 2013.
Unitarity and Factorisation in Quantum Field Theory Zurich Zurich 2008 David Dunbar, Swansea University, Wales, UK VERSUS Unitarity and Factorisation in.
Queen Mary, University of London Nov. 9, 2011 Congkao Wen.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture III.
SQG4 - Perturbative and Non-Perturbative Aspects of String Theory and Supergravity Marcel Grossmann -- Paris Niels Emil Jannik Bjerrum-Bohr Niels Bohr.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
The Harmonic Oscillator of One-loop Calculations Peter Uwer SFB meeting, – , Karlsruhe Work done in collaboration with Simon Badger.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, III Fall Term 2004.
Twistors and Perturbative QCD Yosuke Imamura The Univ. of Tokyo String Theory and Quantum Field Theory Aug.19-23, 2005 at YITP tree-level Yang-Mills 1.
Twistor Inspired techniques in Perturbative Gauge Theories including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
Recursive Approaches to QCD Matrix Elements including work with Z. Bern, S Bidder, E Bjerrum-Bohr, L. Dixon, H Ita, D Kosower W Perkins K. Risager RADCOR.
On-Shell Methods in Gauge Theory David A. Kosower IPhT, CEA–Saclay Taiwan Summer Institute, Chi-Tou ( 溪頭 ) August 10–17, 2008 Lecture II.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | DESY 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Bootstrapping One-loop QCD Scattering Amplitudes Lance Dixon, SLAC Fermilab Theory Seminar June 8, 2006 Z. Bern, LD, D. Kosower, hep-th/ , hep-ph/ ,
1 On-Shell Methods for Precision Calculations for the LHC Princeton LHC Workshop, March 23, 2007 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren.
1 On-Shell Methods in Perturbative QCD ICHEP 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/ hep-ph/
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Darren Forde (SLAC & UCLA). NLO amplitudes using Feynman diagram techniques The limitations. “State of the art” results. New techniques required Unitarity.
MCFM and techniques for one-loop diagrams. R. Keith Ellis Fermilab Berkeley Workshop on Boson+Jets Production, March 2008.
Twistors and Gauge Theory DESY Theory Workshop September 30 September 30, 2005.
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures, II Fall Term 2004.
Unitarity and Amplitudes at Maximal Supersymmetry David A. Kosower with Z. Bern, J.J. Carrasco, M. Czakon, L. Dixon, D. Dunbar, H. Johansson, R. Roiban,
Soft and Collinear Behaviour of Graviton Scattering Amplitudes David Dunbar, Swansea University.
UV structure of N=8 Supergravity Emil Bjerrum-Bohr, IAS Windows on Quantum Gravity 18 th June 08, UCLA Harald Ita, UCLA Warren Perkins Dave Dunbar, Swansea.
Darren Forde (SLAC & UCLA) arXiv: (To appear this evening)
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Benedikt Biedermann | Numerical evaluation of one-loop QCD amplitudes | ACAT 2011 Numerical Evaluation of one-loop QCD Amplitudes Benedikt Biedermann Humboldt-Universität.
Computational Methods in Particle Physics: On-Shell Methods in Field Theory David A. Kosower University of Zurich, January 31–February 14, 2007 Lecture.
Status of Higher Order QCD Calculations Aude Gehrmann-De Ridder ICHEP 2010Status of Higher Order QCD Calculations.
Loop Calculations of Amplitudes with Many Legs DESY DESY 2007 David Dunbar, Swansea University, Wales, UK.
From Twistors to Gauge-Theory Amplitudes WHEPP, Bhubaneswar, India January 7 January 7, 2006.
Twistor Inspired techniques in Perturbative Gauge Theories-II including work with Z. Bern, S Bidder, E Bjerrum- Bohr, L. Dixon, H Ita, W Perkins K. Risager.
NLO Vector+Jets Predictions with B LACK H AT & SHERPA David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the B LACK H AT Collaboration.
On-Shell Methods in QCD: First Digits for BlackHat David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BlackHat Collaboration.
W + n jet production at NLO Lance Dixon (SLAC) representing the BlackHat Collaboration C. Berger, Z. Bern, L.D., F. Febres Cordero, D. Forde, T. Gleisberg,
V +Jets at Next-to-Leading Order with BlackHat David A. Kosower Institut de Physique Théorique, CEA–Saclay on behalf of the BlackHat Collaboration Carola.
On-Shell Methods in Quantum Field Theory David A. Kosower Institut de Physique Théorique, CEA–Saclay LHC PhenoNet Summer School Cracow, Poland September.
Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA–Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon.
June 19, 2007 Manchester1 High-Energy Electroweak Physics Parallel Session Zoltan Kunszt, ETH, Zurich Unitarity Cuts and Reduction of Master Integrals.
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
Darren Forde (SLAC & UCLA) arXiv: [hep-ph], hep-ph/ , hep-ph/ In collaboration with Carola Berger, Zvi Bern, Lance Dixon & David.
Amplitudes from Scattering Equations and Q-cuts
Trees in N=8 SUGRA and Loops in N=4 SYM
One-Loop Multi-Parton Amplitudes for The LHC.
Complete QCD Amplitudes: Part II of QCD On-Shell Recursion Relations
On-Shell Meets Observation or, the Rubber Meets the Road
Modern Methods for Loop Calculations of Amplitudes with Many Legs
Analytic Results for Two-Loop Yang-Mills
Computation of Multi-Jet QCD Amplitudes at NLO
Presentation transcript:

Unitarity Methods in Quantum Field Theory David Dunbar, Swansea University, Wales, UK Hidden Structures in Quantum Field Theory, Copenhagen 2009 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA

Objective Experiment Theory precise predictions Experiment Theory We want technology to calculate these predictions quickly, flexibly and accurately -use calculations to probe theory -despite our successes we have a long way to go

Feynman Diagram of One- loop n-point Amplitude (in Massless Theory) degree p in l Vertices involve loop momentum p=n : Yang-Mills p=2n Gravity propagators

Passarino-Veltman reduction of 1-loop Decomposes a n-point integral into a sum of (n-1) integral functions obtained by collapsing a propagator Four dimensional cut construcible -coefficients are rational functions of |ki§ using spinor helicity -feature of Quantum Field Theory

Unitarity Techniques Alternate to Feynman diagram techniques Discuss and demystify Some applications Most at one-loop Looking at analytic techniques

-cross-order relation Unitarity of S-matrix -cross-order relation D Dunbar, NBA, Aug 09

-use unitarity to identify the coefficients Unitarity Methods -look at the two-particle cuts K -use unitarity to identify the coefficients

Topology of Cuts -look when K is timelike, in frame where K=(-K0,0,0,0) 3-momenta l1 and l2 are back to back on surface of sphere imposing an extra condition

Generalised Unitarity -use info beyond two-particle cuts

Analytic Structure K1 K2 z Forde -triple cut reduces to problem in complex analysis -real momenta corresponds to unit circle -A(z) can be extended to all z poles at z=0 are triangles functions poles at z  0 are box coefficients

-works for massless corners (complex momenta) Box-Coefficients Britto,Cachazo,Feng -works for massless corners (complex momenta)

Unitarity Techniques -use generalised unitarity, step by step. This is a choice, since one can just use C2 -C2 most complicated/time consuming Different ways to approach this reduction to covariant integrals fermionic analytic structure

Unitarity using canonical Forms -act directly on C2 with amplitudes written in Spinor helicity -integrand is function of -really recognising standard integrals which can be done using any method- once!

Reduction to covariant integrals -convert fermionic variables -converts integral into n-point integrals -advantages: connects to conventional reduction technique everyone understands! -organise according to order of li

-simplest non-trivial term in the two-particle cut kb P -linear triangle

Extend the canonical form -algebraic identity

more canonical forms Use identity, Gram determinant of three mass triangle

-better to recombine and rationalise

-another useful identity, -leading order is blind to label on li

Higher Order Canonical Forms D Dunbar,, NBA, Aug 09

Spurious singularities, -A singularity in the coefficient not present in the amplitude -singularity cancels between integral functions -can combine integral functions

Canonical Forms for Triple Cut K1 K2 D Dunbar,, NBA, Aug 09

Applications: One-Loop QCD Amplitudes One Loop Gluon Scattering Amplitudes in QCD -Four Point : Ellis+Sexton, Feynman Diagram methods -Five Point : Bern, Dixon,Kosower, String based rules -Six-Point : lots of People, lots of techniques

Organisation of QCD amplitudes: divide amplitude into smaller physical pieces -QCD gluon scattering amplitudes are the linear combination of Contributions from supersymmetric multiplets -use colour ordering; calculate cyclically symmetric partial amplitudes -organise according to helicity of external gluon

The Six Gluon one-loop amplitude 94 05 06 - 93 ~13 papers 81% `B’ Berger, Bern, Dixon, Forde, Kosower Bern, Dixon, Dunbar, Kosower Britto, Buchbinder, Cachazo, Feng Bidder, Bjerrum-Bohr, Dixon, Dunbar Bern, Chalmers, Dixon, Kosower Bedford, Brandhuber, Travaglini, Spence Forde, Kosower Xiao,Yang, Zhu Bern, Bjerrum-Bohr, Dunbar, Ita Britto, Feng, Mastriolia Mahlon

The Six Gluon one-loop amplitude 93 - - - 93 94 94 94 06 94 94 05 06 94 94 05 06 94 05 05 06 94 05 06 06 94 05 06 06 unitarity MHV Difficult/Complexity recursion feynman http://pyweb.swan.ac.uk/~dunbar/sixgluon.html

-supersymmetric approximations (++++++) 1 (-+++++) 6 (--++++) 12 (-+-+++) (-++-++) (---+++) (--+-++) (-+-+-+) 2 -for fixed colour structure we have 64 helicity structures -specify colour structure, 8 independent helicities

QCD is almost supersymmetric…. N=4 SUSY (--++++) 0.32 0.04 (-+-+++) 0.30 (-++-++) 0.37 (---+++) 0.16 0.06 (--+-++) 0.36 (-+-+-+) 0.13 0.02 -working at the specific kinematic point of Ellis, Giele and Zanderaghi (looking at the finite pieces) QCD is almost supersymmetric….

Approximate Universality for N=4 dcd, Ettle Perkins (again at EGZ kinematic point) Compare to QCD and N=1, -comparison is renormalisation scale dependant, helicity emplitudes converge at very large renormalisation scale. Effect a IR artifact?

The Seven Gluon one-loop amplitude 93 93 94 94 94 05 94 94 05 06 94 94 06 05 05 05 05 06 05 09 05 09 05 09 Refs at http://pyweb.swan.ac.uk/~dunbar/sevengluon.html

Using Canonical forms for Eg. SevenPoint N=1 Contributions -20 rational coefficients of the integral functions determine contribution

very similar to N=4 form, Bern Dixon Kosower -general n-point forms can be constructed for many boxes very similar to N=4 form, Bern Dixon Kosower D Dunbar,, NBA, Aug 09

D Dunbar,, NBA, Aug 09

Unitarity -works well to calculate coefficients -particularly strong for supersymmetry (R=0) -can be automated Ellis, Giele, Kunszt ;Ossola, Pittau, Papadopoulos Berger Bern Dixon Febres-Cordero Forde Ita Kosower Maitre -extensions to massive particles progressing Ellis, Giele, Kunzst, Melnikov Britto, Feng Yang; Mastrolia Britto, Feng Mastrolia Badger, Glover, Risager Anastasiou, Britto, Feng, Kunszt, Mastrolia

How do we calculate R? D- dimensional Unitarity Factorisation/Recursion Feynman Diagrams

D-dimensional Unitarity -in dimensional regularisation amplitudes have an extra -2 momentum weight -consequently rational parts of amplitudes have cuts to O() -consistently working with D-dimensional momenta should allow us to determine rational terms -these must be D-dimensional legs Van Neerman Bern Morgan Britto Feng Mastrolia Bern,Dixon,dcd, Kosower Brandhuber, Macnamara, Spence Travaglini Kilgore

Conclusions -new techniques for NLO gluon scattering -progress driven by very physical developments: unitarity and factorisation -amplitudes are over constrained -nice to live on complex plane (or with two times) -still much to do: extend to less specific problems