EXAMPLE 2 Rationalize denominators of fractions. 5 2 3 7 + 2 Simplify

Slides:



Advertisements
Similar presentations
Rational Expressions To add or subtract rational expressions, find the least common denominator, rewrite all terms with the LCD as the new denominator,
Advertisements

EXAMPLE 1 Solve quadratic equations Solve the equation. a. 2x 2 = 8 SOLUTION a. 2x 2 = 8 Write original equation. x 2 = 4 Divide each side by 2. x = ±
Solve an equation with variables on both sides
9.1 – Students will be able to evaluate square roots.Students will be able to solve a quadratic equation by finding the square root. 1. 3x +(– 6x) Warm-Up.
Solve an equation by combining like terms
EXAMPLE 1 Solve a quadratic equation having two solutions Solve x 2 – 2x = 3 by graphing. STEP 1 Write the equation in standard form. Write original equation.
Solve an absolute value equation EXAMPLE 2 SOLUTION Rewrite the absolute value equation as two equations. Then solve each equation separately. x – 3 =
EXAMPLE 2 Using the Cross Products Property = 40.8 m Write original proportion. Cross products property Multiply. 6.8m 6.8 = Divide.
1.1 Linear Equations A linear equation in one variable is equivalent to an equation of the form To solve an equation means to find all the solutions of.
Write decimal as percent. Divide each side by 136. Substitute 51 for a and 136 for b. Write percent equation. Find a percent using the percent equation.
Solve an equation using subtraction EXAMPLE 1 Solve x + 7 = 4. x + 7 = 4x + 7 = 4 Write original equation. x + 7 – 7 = 4 – 7 Use subtraction property of.
Standardized Test Practice
Standardized Test Practice
Standardized Test Practice
© 2007 by S - Squared, Inc. All Rights Reserved.
Lesson 13.4 Solving Radical Equations. Squaring Both Sides of an Equation If a = b, then a 2 = b 2 Squaring both sides of an equation often introduces.
Solve a radical equation
Warm Up #3 Find the exact value. 2. –√ √49 ANSWER –12 7 ANSWER
Warm-Up Exercises ANSWER ANSWER x =
EXAMPLE 6 Solve a rational equation given a function From 1995 through 2003, the annual sales S (in billions of dollars) of entertainment software can.
( ) EXAMPLE 3 Standardized Test Practice SOLUTION 5 x = – 9 – 9
EXAMPLE 2 Rationalize denominators of fractions Simplify
2.13 Warm Up x² - 2x + 15 = 0; 3 x² + 3x – 4 = 0; 1
3.6 Solving Quadratic Equations
Simplify a rational expression
Solving Rational Equations On to Section 2.8a. Solving Rational Equations Rational Equation – an equation involving rational expressions or fractions…can.
5.3 Solving Quadratic Equations by Finding Square Roots.
Warm-Up Exercises Find the exact value. ANSWER – 144 ANSWER 12 – Use a calculator to approximate the value of to the nearest tenth
1. √49 2. –√144 Lesson 4.5, For use with pages
5.6 Solving Quadratic Function By Finding Square Roots 12/14/2012.
10-7 Solving Rational Equations Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
1. 2. * Often times we are not able to a quadratic equation in order to solve it. When this is the case, we have two other methods: completing the square.
Solve an equation by combining like terms EXAMPLE 1 8x – 3x – 10 = 20 Write original equation. 5x – 10 = 20 Combine like terms. 5x – =
To add fractions, you need a common denominator. Remember!
Rational Equations Section 8-6.
Solve an absolute value equation EXAMPLE 2 SOLUTION Rewrite the absolute value equation as two equations. Then solve each equation separately. x – 3 =
2-7 Solving Equations with Rational Numbers Learn to solve equations with rational numbers.
Solve an equation using addition EXAMPLE 2 Solve x – 12 = 3. Horizontal format Vertical format x– 12 = 3 Write original equation. x – 12 = 3 Add 12 to.
Example 1 Solving Two-Step Equations SOLUTION a. 12x2x + 5 = Write original equation. 112x2x + – = 15 – Subtract 1 from each side. (Subtraction property.
Solve an inequality using multiplication EXAMPLE 2 < 7< 7 x –6 Write original inequality. Multiply each side by –6. Reverse inequality symbol. x > –42.
EXAMPLE 1 Solve a two-step equation Solve + 5 = 11. x 2 Write original equation. + 5 = x – 5 = x 2 11 – 5 Subtract 5 from each side. = x 2 6 Simplify.
Use the substitution method
Splash Screen. Then/Now Solve equations by using addition and subtraction. Solve equations by using multiplication and division.
Solve Linear Systems by Substitution January 28, 2014 Pages
(x+2)(x-2).  Objective: Be able to solve equations involving rational expressions.  Strategy: Multiply by the common denominator.  NOTE: BE SURE TO.
Solve Linear Systems by Substitution Students will solve systems of linear equations by substitution. Students will do assigned homework. Students will.
EXAMPLE 2 Solving an Equation Involving Decimals 1.4x – x = 0.21 Original equation. (1.4x – x)100 = (0.21)100 Multiply each side by 100.
Multiply one equation, then add
Solve a two-step equation by combining like terms EXAMPLE 2 Solve 7x – 4x = 21 7x – 4x = 21 Write original equation. 3x = 21 Combine like terms. Divide.
Standard 8 Solve a quadratic equation Solve 6(x – 4) 2 = 42. Round the solutions to the nearest hundredth. 6(x – 4) 2 = 42 Write original equation. (x.
Add ___ to each side. Example 1 Solve a radical equation Solve Write original equation. 3.5 Solve Radical Equations Solution Divide each side by ___.
Rewrite a linear equation
1. Add: 5 x2 – 1 + 2x x2 + 5x – 6 ANSWERS 2x2 +7x + 30
Solve a literal equation
Solving Two-Step Equations
3-1 HW:Pg #4-28eoe, 30-48e, 55, 61,
Solve a quadratic equation
( ) EXAMPLE 3 Standardized Test Practice SOLUTION 5 x = – 9 – 9
Solve for variable 3x = 6 7x = -21
Solve an equation by multiplying by a reciprocal
Solve a quadratic equation
Solve an equation by combining like terms
Solving Multi-Step Equations
Warmup Find the exact value. 1. √27 2. –√
Objective Solve quadratic equations by using square roots.
Multiplying and Dividing Rational Numbers
Warm Up #3 Find the exact value. 2. –√ √49 ANSWER –12 7 ANSWER
Equations …. are mathematical sentences stating that two expressions are equivalent.
Notes Over Using Radicals
Multiplying and Dividing Rational Numbers
Presentation transcript:

EXAMPLE 2 Rationalize denominators of fractions. 5 2 3 7 + 2 Simplify (a) and (b) SOLUTION (a) 5 2 = 5 2 = 5 2 2 10 =

EXAMPLE 2 Rationalize denominators of fractions. SOLUTION = 3 7 + 2 7 – (b) 3 7 + 2 = 21 – 3 2 49 – 7 + 7 – 2 = 21 – 3 2 47

Solve a quadratic equation EXAMPLE 3 Solve a quadratic equation Solve 3x2 + 5 = 41. 3x2 + 5 = 41 Write original equation. 3x2 = 36 Subtract 5 from each side. x2 = 12 Divide each side by 3. x = + 12 Take square roots of each side. x = + 4 3 Product property x = + 2 3 Simplify.

Solve a quadratic equation EXAMPLE 3 Solve a quadratic equation ANSWER The solutions are and 2 3 2 3 – Check the solutions by substituting them into the original equation. 3x2 + 5 = 41 3x2 + 5 = 41 3( )2 + 5 = 41 2 3 ? 3( )2 + 5 = 41 – 2 3 ? 3(12) + 5 = 41 ? 3(12) + 5 = 41 ? 41 = 41  41 = 41 

Standardized Test Practice EXAMPLE 4 Standardized Test Practice SOLUTION 15 (z + 3)2 = 7 Write original equation. (z + 3)2 = 35 Multiply each side by 5. z + 3 = + 35 Take square roots of each side. z = – 3 + 35 Subtract 3 from each side. The solutions are – 3 + and – 3 – 35

EXAMPLE 4 Standardized Test Practice ANSWER The correct answer is C.

GUIDED PRACTICE GUIDED PRACTICE for Examples 2, 3, and 4 Simplify the expression. 6 5 SOLUTION 6 5 = 6 5 = 6 5 5 30 =

GUIDED PRACTICE GUIDED PRACTICE for Examples 2, 3, and 4 Simplify the expression. 9 8 SOLUTION 9 8 = 9 8 = 9 8 2 4 = 3

GUIDED PRACTICE GUIDED PRACTICE for Examples 2, 3, and 4 Simplify the expression. 17 12 SOLUTION 17 12 = 17 12 = 17 12 51 12 = 2 6

GUIDED PRACTICE GUIDED PRACTICE for Examples 2, 3, and 4 Simplify the expression. 19 21 SOLUTION 19 21 = 19 21 = 19 21 399 21 =

GUIDED PRACTICE for Examples 2, 3, and 4 – 6 7 – 5 SOLUTION = – 6 7 – 5 7 + – 6 7 – 5 = – 42 – 6 5 49 – 7 + 7 – 5 = – 21 – 3 5 22

GUIDED PRACTICE for Examples 2, 3, and 4 2 4 + 11 SOLUTION = 2 4 + 11 4 – 2 4 + 11 = 8 – 2 11 16 – 4 + 4 – 11 = 8 – 2 11 5

GUIDED PRACTICE for Examples 2, 3, and 4 – 1 9 + 7 SOLUTION – 1 9 + 7 = 9 – = – 9 + 7 81 – 9 + 9 – 7 = – 9 + 7 74

GUIDED PRACTICE for Examples 2, 3, and 4 4 8 – 3 SOLUTION = 4 8 – 3 8 + 4 8 – 3 = 32 + 4 3 64 – 4 + 4 – 3 = 32 + 4 3 61

GUIDED PRACTICE for Examples 2, 3, and 4 Solve the equation. 5x2 = 80 SOLUTION 5x2 = 80 Write original equation. x2 = 16 Divide each side by 5. x = + 16 Take square roots of each side. x = + 4 Product property x = + 4 Simplify.

GUIDED PRACTICE for Examples 2, 3, and 4 ANSWER The solutions are and . 4 – 4 Check Check the solutions by substituting them into the original equation. 5x2 = 80 5x2 = 80 5(4)2 = 80 ? 5(– 4)2 = 80 ? 5(16) = 80 ? 5(16) = 80 ? 80 = 80  80 = 80 

GUIDED PRACTICE for Examples 2, 3, and 4 Solve the equation. z2 – 7 = 29 SOLUTION z2 – 7 = 29 Write original equation. z2 = 36 Add 7 to each side. z = + 36 Take square roots of each side. z = + 6 Product property z = + 6 Simplify.

GUIDED PRACTICE for Examples 2, 3, and 4 ANSWER The solutions are and . 6 – 6 Check Check the solutions by substituting them into the original equation. z2 – 7 = 29 z2 – 7 = 29 ? (6)2 – 7 = 29 ? (– 6)2 – 7 = 29 ? 36 – 7 = 29 ? 36 – 7 = 29 29 = 29  29 = 29 

GUIDED PRACTICE for Examples 2, 3, and 4 3(x – 2)2 = 40 SOLUTION Write original equation. (x – 2)2 = 40 3 Divide each side by 3. + (x – 2) = 40 3 Take square roots of each side. x = 40 3 2 + Division property x = 40 3 2 + = 120 3 2 +

GUIDED PRACTICE for Examples 2, 3, and 4 = 4(30) 3 2 + = 2 30 3 2 + ANSWER The solutions are . 2 30 3 2 +