Example: Consider the following equations of motion for a submarine in the dive plane زمستان 1382 Dr. H. Bolandi.

Slides:



Advertisements
Similar presentations
Differential Equations
Advertisements

Feedback Control Systems Dr. Basil Hamed Electrical & Computer Engineering Islamic University of Gaza.
TECHNIQUES OF INTEGRATION
Complex Power – Background Concepts
Ch 8.1 Numerical Methods: The Euler or Tangent Line Method
Lecture 35 Numerical Analysis. Chapter 7 Ordinary Differential Equations.
Linear Equations in Linear Algebra
CHAPTER 2 LIMITS AND DERIVATIVES. 2.2 The Limit of a Function LIMITS AND DERIVATIVES In this section, we will learn: About limits in general and about.
A proton is shot with a velocity v at an angle  to a uniform magnetic field B, which is directed along the x-axis as shown below. Assume that the only.
Chapter Two: Section Two Basic Differentiation Rules and Rates of Change.
3 DERIVATIVES.
Chapter 11 Motion.
LIAL HORNSBY SCHNEIDER
ChE 452 Lecture 25 Non-linear Collisions 1. Background: Collision Theory Key equation Method Use molecular dynamics to simulate the collisions Integrate.
FINDING A POLYNOMIAL PASSING THROUGH A POINT. Review: the Linear Factorization Theorem If where n > 1 and a n ≠ 0 then Where c 1, c 2, … c n are complex.
3 DIFFERENTIATION RULES. We have:  Seen how to interpret derivatives as slopes and rates of change  Seen how to estimate derivatives of functions given.
8 TECHNIQUES OF INTEGRATION. Due to the Fundamental Theorem of Calculus (FTC), we can integrate a function if we know an antiderivative, that is, an indefinite.
Stability Analysis . A system is BIBO stable if all poles or roots of
Finding Limits Algebraically In Section 12-1, we used calculators and graphs to guess the values of limits. However, we saw that such methods don’t always.
ECE 576 – Power System Dynamics and Stability Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois at Urbana-Champaign.
Adiabatic Quantum Computing Josh Ball with advisor Professor Harsh Mathur Problems which are classically difficult to solve may be solved much more quickly.
KINEMATICS Equations … The BIG FOUR. Competency Goal 2: Build an understanding of linear motion. Objectives – Be able to: 2.03 Analyze acceleration as.
© 2015 Pearson Education, Inc.
Trigonometric Identities
3 DERIVATIVES.
CHAPTER 3 NUMERICAL METHODS
Copyright © Cengage Learning. All rights reserved.
Lesson 8: Basic Monte Carlo integration
Dr. Hatem Elaydi Digital Control, EELE 4360 Dec. 16, 2014
Linear homogeneous ODEn with constant coefficients
Linear Equations Constant Coefficients
1.1 A Preview of Calculus What is Calculus????????????????????
Copyright © Cengage Learning. All rights reserved.
12. Principles of Parameter Estimation
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
PSAT MATH Spring Scholars.
Copyright © Cengage Learning. All rights reserved.
Solutions to Systems Of Linear Equations II
ECE 2202 Circuit Analysis II
Ch 11.1: The Occurrence of Two-Point Boundary Value Problems
Design via Root Locus (Textbook Ch.9).
Copyright © Cengage Learning. All rights reserved.
Trigonometric Identities
Chapter 9 Design via Root Locus <<<4.1>>>
THE SUBSTITUTION METHOD
Chapter 9 Design via Root Locus <<<4.1>>>
Solution of Equations by Iteration
Quantum One.
Copyright © Cengage Learning. All rights reserved.
2.2 The Limit of a Function In this section, we will learn:
Differential Equations
Copyright © Cengage Learning. All rights reserved.
True Wind Prompt: What is a true wind? How is the true wind defined in terms of the reference frame? Answer – A true wind is a wind vector with magnitude.
Digital and Non-Linear Control
Copyright © Cengage Learning. All rights reserved.
Jumps, Hysteresis & Phase Lags Section 4.5
Functions.
Linear Equations in Linear Algebra
Similar and Congruent Triangles
Graphing a Linear Equation
Arab Open University Faculty of Computer Studies Dr
Systems of Linear Equations
Vectors add direction to a magnitude.
Mechatronics Engineering
12. Principles of Parameter Estimation
Linear Equations in Linear Algebra
IntroductionLecture 1: Basic Ideas & Terminology
IntroductionLecture 1: Basic Ideas & Terminology
Presentation transcript:

Example: Consider the following equations of motion for a submarine in the dive plane زمستان 1382 Dr. H. Bolandi

Where : زمستان 1382 Dr. H. Bolandi

Now say we want to linearize these equations for a level flight path when the dive plane angle is zero, δ=0 . Then by setting all time derivatives to zero ( this corresponds to equilibrium ) we get : زمستان 1382 Dr. H. Bolandi

If we choose to linearize around the equilibrium we have زمستان 1382 Dr. H. Bolandi

One thing we have to emphasize is that in the submarine examples in these notes U is the forward speed (not control). The control is designated by δ; this is standard notation. زمستان 1382 Dr. H. Bolandi

زمستان 1382 Dr. H. Bolandi

زمستان 1382 Dr. H. Bolandi STOP

3) زمستان 1382 Dr. H. Bolandi

روشهای محاسبه ماتريس انتقال حالت زمستان 1382 Dr. H. Bolandi 1) روش سريها 2) روش تبديل لاپلاس 3) روش قطري سازي 4) روش كيلي ـ هاميلتون 5) روش سيلوستر

محاسبة ماتريس انتقال حالت با استفاده از روش قطري‌سازي محاسبة ماتريس انتقال حالت با استفاده از روش قطري‌سازي زمستان 1382 Dr. H. Bolandi حالت اول: ماتريس A داراي قطبهاي مجزا و غيرتكراري است. لذا قطري‌سازي آن امكان پذير است. D ماتريس قطري شده است كه به فرم زير مي‌باشد:

مثال : زمستان 1382 Dr. H. Bolandi

J ماتريسي به فرم كانونيكي جردن است. زمستان 1382 Dr. H. Bolandi حالت دوم : مقادير ويژه A تكراري باشند و بتوان A را به فرم جردن تبديل نمود. ابتدا ماتريس S را بنحوي محاسبه مي‌كنيم كه ماتريس A را بتوان بفرم جردن تبديل نمود: J ماتريسي به فرم كانونيكي جردن است.

با توجه به تعريف تبديل همانندي فوق: زمستان 1382 Dr. H. Bolandi با توجه به تعريف تبديل همانندي فوق: مثال :

مثال : زمستان 1382 Dr. H. Bolandi

قطری سازی با استفاده ازروش ماتريسهاي همبسته زمستان 1382 Dr. H. Bolandi

زمستان 1382 Dr. H. Bolandi

مثال : ماتريس A را قطري كنيد. زمستان 1382 Dr. H. Bolandi

روش كيلي هاميلتون زمستان 1382 Dr. H. Bolandi

زمستان 1382 Dr. H. Bolandi nريشه دارد

اين معادله دلالت بر قضيه كيلي هاميلتون دارد كه هر ماتريس مربع مانند A معادله مشخصه خود را برآورده مي‌سازد لذا چند جمله‌اي متناظر با معادلات (4) و (5) بصورت زير هستند كه : زمستان 1382 Dr. H. Bolandi طريقه عمل :

مثال : ماتريس انتقال حالت ماتريس A را محاسبه كنيد. زمستان 1382 Dr. H. Bolandi

زمستان 1382 Dr. H. Bolandi در صورتيكه مقادير ويژه A تكراري باشند از روش بالا ديگر نمي‌توان استفاده نمود.

مثال : زمستان 1382 Dr. H. Bolandi

مثال : روش كيلي ـ هاميلتون زمستان 1382 Dr. H. Bolandi

زمستان 1382 Dr. H. Bolandi مثال : حل :

مثال : زمستان 1382 Dr. H. Bolandi

Typical results of the simulation in terms of the pitch angle θ are shown in Figure 8. As with any numerical results, however, the real question is: are they correct? The answer to this borders between art and science, and in the context of system simulations here is a set of a few checks: زمستان 1382 Dr. H. Bolandi 1. In this particular simulation we used a time step ∆t = 0.01 seconds. Is this small enough? The easiest way to check this is to reduce (or increase) ∆t, say by a factor of 10, and re–run the program. If the results do not change, the above choice for ∆t was good. A more rational way to do the same thing would be to look at the natural time constant of the dynamics of the system. The system poles were found in page 18. It seems that the fastest pole of the system has real part −0.5159, and the time constant that corresponds to this is about 1/0.5 or 2 seconds. This means that it takes a couple of seconds for the boat to “listen” to its dive planes, so ∆t = 0.01 should give very accurate results. In fact in this case we could go as far as ∆t = 0.5 and we would still be reasonably accurate. 2. Look again at the system eigenvalues: one of them is certainly dominant, −0.0297, so the response should approximate that of a first order system with a time constant 1/0.0297, or about 33.5 seconds. Now look at the response of the figure: does it take approximately 33.5 seconds to go up to 60% of its final value? 3. By now we are convinced that the transient response we see in the figure agrees with our engineering intuition. How about the final or steady state value of the response? This is something we can compute exactly. At steady state we should have, so that our equations become at steady state:

so that our equations become at steady state: زمستان 1382 Dr. H. Bolandi

Simulation of a nonlinear set of equations proceeds in a similar manner. Let’s assume that the only important nonlinearities in our example come from the trigonometric functions and not the hydrodynamic forces and moments; in other words the nonlinear equations of motion are زمستان 1382 Dr. H. Bolandi and The numerical integration proceeds in exactly the same way as before; the only difference is that here the values for and are computed from the new equations. Typical results are shown in the previous figure where the difference between linear and nonlinear simulations is also shown. Naturally, whenever possible, simulations must be performed for the nonlinear systems since these model the underlying physics more accurately. The steady state value for θ can be computed from the nonlinear equations in the same way as before, the algebra is easy in the example case but keep in mind that for general nonlinear equations it may be very difficult. Here we can find

تبديل همانندي در معادلات حالت و خروجي زمستان 1382 Dr. H. Bolandi