Outline Er:YAG double-clad crystal fiber

Slides:



Advertisements
Similar presentations
Thermal properties of laser crystal Rui Zhang ACCL Division V, RF-Gun Group Feb 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Advertisements

Fiber Optics Communications. Topics Fiber Materials Fiber Manufactoring.
The LaRC Fiber Draw Tower Presented by Stan DeHaven.
Physics of, and requirements for laser crystals Blaž Kmetec Put together by: Blaž Kmetec prof. dr. Martin Čopič Supervisor: prof. dr. Martin Čopič Faculty.
S Digital Communication Systems Fiber-optic Communications - Supplementary.
Bulk Scintillator Light Yield  We have prepared samples of bulk scintillator in order to study optimization for the MICE Fiber Tracker  pT(1.25%) + 3HF(.1-1%)
CNMFrascati 12/01/061 High Power Laser System for Advanced Virgo C.N.Man Design goals Present technology Other activities in the world Virgo+ and Laser.
Matt Ruby & Colin Diehl High Power Double-Clad Fiber Laser.
Multibandgap quantum well wafers by IR laser quantum well intermixing: simulation of the lateral resolution of the process O. Voznyy, R. Stanowski, J.J.
Characteristic evaluation of new laser crystals Rui Zhang ACCL Division V, RF-Gun Group Feb 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Dye lasers The gain medium in a dye lasers is a solution made with an organic dye molecule. The solution is intensely coloured owing to the very strong.
Absorption and emission processes
Ch 6: Optical Sources Variety of sources Variety of sources LS considerations: LS considerations: Wavelength Wavelength  Output power Output power Modulation.
Characterization of fiber amplifiers Lecture-5. EDFA architecture Figure: EDFA architecture Characterization of DFA.
LSRL 06 Nov, 2003, IAEA CRP Meeting in Vienna Feasibility study on Scalable Self-Phase Locking of two beam combination using stimulated Brillouin scattering.
Yb Fiber Laser System Xiangyu Zhou 19. Feb
ILE OSAKA New Concept of DPSSL - Tuning laser parameters by controlling temperature - Junji Kawanaka ILE OSAKA US-Japan Workshop on Laser-IFE March.
Formatvorlage des Untertitelmasters durch Klicken bearbeiten 1/26/15 1 kHz, multi-mJ Yb:KYW bulk regenerative amplifier 1 Ultrafast Optics and X-Ray Division,
High power ultrafast fiber amplifiers Yoann Zaouter, E. Cormier CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France Stephane Gueguen, C. Hönninger,
NOISE IN OPTICAL SYSTEMS F. X. Kärtner High-Frequency and Quantum Electronics Laboratory University of Karlsruhe.
Double-Clad Erbium-Ytterbium Co-Doped Fiber Laser Colin Diehl & Connor Pogue.
Yb:CaF 2 Diode-Pumped Regenerative Amplifier: Study and Optimization of Pulse Duration Versus Repetition Rate ICUIL, Watkins Glen, 26 th September-1 st.
Single-Crystal YAG Fiber Optics for the Transmission of High Energy Laser Radiation B. Laustsen and J. A. Harrington Department of Material Science & Engineering.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Ultra-short pulse operation of all-optical fiber passively mode-locked
Folienvorlagen für Seminarvortrag. Novel laser concepts HR-mirror out coupling mirror disc cooling diode laser focusing optic diode laser focusing optic.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Optimized temperature/bandwidth operation of cryogenic Yb:YAG composite thin-disk laser amplifier 1 Ultrafast Optics and X-Ray Division, Center for Free-Electron.
Min Hyeong KIM High-Speed Circuits and Systems Laboratory E.E. Engineering at YONSEI UNIVERITY
CryoYb:YAG-1 DJR 12/6/2015 MIT Lincoln Laboratory Cryogenically cooled solid-state lasers: Recent developments and future prospects * T. Y. Fan, D. J.
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
Quenching of Fluorescence and Broadband Emission in Yb 3+ :Y 2 O 3 and Yb 3+ :Lu 2 O 3 3rd Laser Ceramics Symposium : International Symposium on Transparent.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
4-Level Laser Scheme nn  m  →  n  excitation  n  →  m  radiative decay slow  k  →  l  fast(ish)  l  →  m  fast to maintain population.
Waves, Light & Quanta Tim Freegarde Web Gallery of Art; National Gallery, London.
Laser drilling of a Copper Mesh
Erbium Microchip Laser Development 1.Erbium:Yb:Glass and Er:Yb:LiNbO3 Status. 2.Problems with 980 nm Laser Pump. 3.Development Plans.
Date of download: 5/30/2016 Copyright © 2016 SPIE. All rights reserved. The Raman spectra of Er,Yb:KLaP glass samples. The Raman frequency shift of the.
Progress on Bi-doped fibers Dong-Yo Jheng 2012/06/07.
 LIGHT  AMPLIFICATION BY  STIMULATED  EMISSION OF  RADIATION.
Nd:YAG Solid Laser Xiangyu Zhou 20. Nov Yb fiber laser system on the ground Menlo 1030nm oscillator Grating stretcher (Transmission) SOA pulse.
High Power Cladding-pumped Fiber Laser Speaker: Shiuan-Li Lin Advisor : Sheng-Lung Huang Solid-State Laser Crystal and Device Laboratory.
Different Types of YAG Laser Marking Machine. YAG means…???  YAG (yttrium aluminum garnet) lasers are one of the most common types of solid-state laser,
Optical Engines 842 S Sierra Madre St STE D Colorado Springs CO, (815) Fiber Laser Amplifier Technology.
Picking the laser ion and matrix for lasing
Fiber Frequency Combs Jennifer Black EE230 Final Presentation.
Rydberg atoms part 1 Tobias Thiele.
Erbium-doped fiber amplifiers Joonas Leppänen Emma Kiljo Jussi Taskinen Niklas Heikkilä Alexander Permogorov Group 3 EDFA Photonics.
KTH ROYAL INSTITUTE OF TECHNOLOGY Rare earth doped waveguide lasers and amplifiers Dimitri Geskus Department of Materials and Nano Physics KTH - Royal.
Progress Report Speaker: Shiuan-Li Lin Advisor : Sheng-Lung Huang Solid-State Laser Crystal and Device Laboratory.
Fiber Laser Construction
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Comparison of luminescence spectra for Tm3+/Yb3+ codoped bulk ZLAG glass and ZLA.
Absorption Small-Signal Loss Coefficient. Absorption Light might either be attenuated or amplified as it propagates through the medium. What determines.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Advisor: Sheng-Lung Huang Speaker: Sheng-Feng Chen 1.
Four wave mixing in submicron waveguides
J.Kalkman, A.Tchebotareva, A.Polman, T.J.Kippenberg,
Speaker: Chieh-Wei Huang Advisor: Sheng-Lung Huang
Laser Beam Welding LIGHT AMPLIFICATION by STIMULATED EMISSION of RADIATION. Coalescence of heat is produced by the Laser beam which is having high energy.
Single and dual wavelength Er:Yb double clad fiber lasers
Diode Pumped Cryogenic High Energy Yb-Doped Ceramic YAG Amplifier for Ultra-High Intensity Applications P. D. Mason, S. Banerjee, K. Ertel, P. J. Phillips,
Optical Amplifier.
Nd:YAG Solid Laser 3-2 / A-1 on the ground
Presentation series Photon Physics, UU April 9, 2009 Marlous Kamp
L. Di Labio, W. Lüthy, V. Romano, T. Feurer Transitions and mechanisms
Target R&D for JHF neutrino
Helium-Neon laser Henrik Porte.
Rare-Earth-Doped Fiber Lasers
Principle of Mode Locking
Department of photonics, National Cheng Kung University
Presentation transcript:

Topic Report Er:YAG DCF for High Power Laser Kuang-Yu Hsu 許光裕 4/19/2012

Outline Er:YAG double-clad crystal fiber Er:YAG crystal optical properties Simulation of Pump absorption

Low-T Double-Clad Crystal Fiber Inner cladding material: aluminosilicate glass tube, (ID/OD= 80/130 mm) nD(587.6 nm)= 1.538. T softening= 935 oC Outer cladding material: borosilicate glass tube (ID/OD= 200/330 mm) n(589.3 nm)= 1.474. T softening= 821 oC #120315 #111116 NTUST

High Index Glasses for Er:YAG Pump: 1532 nm Lasing: 1617, 1645 nm N-LaSF9 or N-LaSF41?

N-LaSF9-clad Crystal Fibers #120406 YAG+N-LaSF9 #120411 Er:YAG+ N-LaSF9 Barely visible core. Very matched index.

N-LaSF9 CF Samples #120406 pattern at 532 nm No. Core Growth speed Length Result #120418 Er:YAG 10 mm/min 4.4 cm ? #120411 1 mm/min 12.4 cm #120406 YAG 4 cm Guided: 532, 660? nm #120406 pattern at 532 nm

Summary N-LaSF9-clad YAG CF (1 mm/min): guided at 532 nm. N-LaSF9: no crack issue. A suitable material in fabrication point of view. N-LaSF9 or N-LaSF41? To be verified. (More samples)

Er:YAG Crystal Cross-sections 1530 nm Narrow linewidth IEEE JQE 44 , pp. 803-810, 2008.

Er:YAG Energy Level Quasi-three level system. But no re-absorption at 1645 nm. Proc. SPIE 6552, 65520K, 2007. (Dubinskii) IEEE JSTQE 15, pp. 361-371, 2009 1532 nm: 19 to 6544 cm-1

Er:YAG Crystal Lasing wavelength: 1645 nm, 2940 nm Pump wavelength for 1645 nm: 980 nm (LD): thermal loading due to large quantum defect resonant pumping with reduced quantum defect heating, no Yb-codoped 1470 nm (LD): 10 nm broad bandwidth, poor beam quality, require high Er3+ concent. 1532 nm (clad-pump fiber laser): flexibility in wavelength, beam quality Concentration: 0.7x1026 m-3 = 0.5 at.% Absorption coefficient: 2.6 cm-1/at.% @ 1532 nm For 0.5 at.% doping, absorption coefficient= 1.3 cm-1 @ 1532 nm Absorption cross-section: 1.9x10-24 m2 Emission cross-section: 2.7x10-24 m2 @ 1645 nm, 3.2x10-24 m2 @ 1617 nm (Ref.: JSTQE 15, pp. 361-371, 2009) Absorption cross-section: 1.1x10-24 m2 @ 1470 nm (diode pump) Emission cross-section: 0.55x10-24 m2 @ 1645 nm, (Ref: JQE 46, pp. 1039-1042, 2010)

Er:YAG Crystal

Er:YAG Up-conversion ETU: energy transfer up-conversion IEEE JSTQE 15, pp. 361-371, 2009 Crystal length: 58, 29, 15, 7.0, 3.5 mm for 0.25, 0.5, 1, 2, 4 at.% Er concentrations. 1532-nm pump radius: 220 mm (Ref.: JSTQE 15, pp. 361-371, 2009)

Parameter Table Cross-section unit: 10-19 cm2 NT (cm-3) tf (ms) spGSA spESA se seESA se(1-fL)/sp Ref. Ce:YAG (bulk) 2.94x1019 0.065 21 @ 446 nm ? Cr4+:YAG 4.54x1017 4.2 22@ 1060nm 5.5 2 1.2 0.036 [1] Cr:forsterite 2.55 1.36 @ 1060nm 1.16 0.18 0.72 [2] Ti:sapphire 5.7x1018 (0.017 wt.%) 3.15 0.52/0.23(p), 0.22/0.12(s) @ 532/446 nm 2.7 (p), 1.0 (s) [3] Ruby 3000 1.71(p), 0.85(s) @ 554 nm 0.25 [4] Er:silica 10000 0.025 @ 980 nm 0.05 @ 1552 nm [5] Er:YAG 6500 0.19 @ 1532 nm - 0.27 @ 1645 nm [6] Pump saturation power for 10-mm-core fiber: 1. Ce:YAG: 2.56 W 2. Cr:YAG: 11 mW 3. EDF: 6.4 mW 4. Ti:Al2O3: 1.8 W (p), 4.2 W (s) @ 532 nm, 4.8 W (p), 9.2 W (s) @ 446 nm 5. Ruby: 0.7 mW (p), 1.4 mW (s) 6. Er:YAG: 1.3 mW 1. KY Hsu’s current version 2. A. Sennaroglu, JOSA B 18 1578-1586 2001 3. P. F. Moulton, JOSA B 3 125-133 1986 4. W. Koechner, Solid-state laser engineering, 1999 5. K. Y. Huang, JLT 26, pp. 1632-1639, 2008. 6. J. W. Kim et al, JSTQE 15, 361-371, 2009. 13 13

Summary Suitable Er:YAG DCF structure is using aluminosilicate & borosilicate as the inner and outer cladding materials. Pumping Er:YAG at 1532 nm is easy (small saturation intensity). The core diameter of Er:YAG may be large (~100 mm) for high power laser applications. Suitable fiber length of cladding-pump Er:YAG crystal fiber (core/inner clad diameter of 200/400 mm) is ~ 30 cm with a pump power of 50 W.