UV Emission of Atomic Oxygen

Slides:



Advertisements
Similar presentations
Spectro-imaging observations of H 3 + on Jupiter Observatoire de Paris, France Emmanuel Lellouch.
Advertisements

Big Questions If astronomers measure an object’s apparent brightness (flux), what do they need to know to figure out how far away that object is? Why are.
© 2009 SRI International Laboratory measurement of the CO Cameron bands and visible emissions following EUV photodissociation of CO 2 Konstantinos S. Kalogerakis,
Heating and Cooling 10 March 2003 Astronomy G Spring 2003 Prof. Mordecai-Mark Mac Low.
Catalysis and Catalysts - XPS X-Ray Electron Spectroscopy (XPS)  Applications: –catalyst composition –chemical nature of active phase –dispersion of active.
Saturn’s Auroras and Polar Atmosphere from Cassini UVIS Wayne Pryor Robert West Kris Larsen Ian Stewart Larry Esposito Joshua Colwell William McClintock.
The Nightglow Spectrum of Jupiter as seen by the Alice UV Spectrograph on New Horizons A. J. Bayless 1, G. R. Gladstone 1, J.-Y. Chaufray 2, K. D. Retherford.
Molecular Luminescence Spectrometry Chap 15. Three Related Optical Methods Fluorescence Phosphorescence Chemiluminescence } From excitation through absorption.
SCIFER2 UV Emissions Allison Jaynes, UNH Dartmouth CASCADES2 Meeting 10/30/09 Allison Jaynes, UNH Dartmouth CASCADES2 Meeting 10/30/09 (Images, movie and.
A Tale of Two Planets: Cassini UVIS He 584Å Airglow at Jupiter and Saturn Chris Parkinson, Caltech Planetary Science Seminar January 10, 2006.
Lessons from other wavelengths. A picture may be worth a thousand words, but a spectrum is worth a thousand pictures.
Chapter 6 Characteristics of Atoms Department of Chemistry and Biochemistry Seton Hall University.
INTRO TO SPECTROSCOPIC METHODS (Chapter 6 continued ) Quantum-Mechanical Properties Of Light Photoelectric Effect Photoelectric Effect Energy States of.
METO 637 LESSON 3. Photochemical Change A quantum of radiative energy is called a photon, and is given the symbol h Hence in a chemical equation we.
Characterization of CF 4 primary scintillation Andrey Morozov.
A. Milillo, and the GENIE Team. Golden Age of of Solar System Exploration Ganymede’s and Europa’s Neutral Imaging Experiment (GENIE) GENIE is a high-angular-resolution.
Space Science MO&DA Programs - August Page 1 SS Polar Quantifies Magnetospheric Drivers of Upper Atmospheric Chemistry Changes High resolution global.
Ultraviolet Photodissociation Dynamics of the 3-Cyclohexenyl Radical Michael Lucas, Yanlin Liu, Jasmine Minor, Raquel Bryant, Jingsong Zhang Department.
Plasma diagnostics using spectroscopic techniques
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
International Colloquium and Workshop “Ganymede lander: science goals and experiments” Space Research Institute (IKI), Moscow, Russia 5-7 March 2013 Chemistry.
Data Needs for Simulations of Electron-driven Processes in Planetary and Cometary Atmospheres by Laurence Campbell & Michael J. Brunger School of Chemical.
The state of the plasma sheet and atmosphere at Europa D. E. Shemansky 1, Y. L. Yung 2, X. Liu 1, J. Yoshii 1, C. J. Hansen 3, A. Hendrix 4, L. W. Esposito.
Medical Imaging Radiation I. Naked to the Bone: Medical Imaging in the Twentieth Century (Paperback)by Bettyann Kevles Bettyann Kevles E=mc2: A Biography.
Ionospheric Current and Aurora CSI 662 / ASTR 769 Lect. 12 Spring 2007 April 24, 2007 References: Prolss: Chap , P (main) Tascione: Chap.
New results in polarimetry of planetary thermospheric emissions: Earth and Jovian cases. M. Barthelemy (1), J. Lilensten (1), C. Simon (2), H. Lamy(2),
SS Space Science Program October 2000 Particle energy in the magnetosphere is carried mainly by trapped protons. Proton auroras are caused by protons which.
Liquid Oxygen is Blue, Why? The electronic properties of oxygen (i.e. the distribution of electrons) give rise to some interesting optical properties -
Response of the Earth’s environment to solar radiative forcing
A NITRIC OXIDE PHOTOMETER FOR ASIM P.J. Espy, Norwegian University of Science and Technology (NTNU), Norway T. Neubert, Danish National Space Centre,
Solar Radiation Source –Hertzprung Russel DiagramHertzprung Russel Diagram –Solar structureSolar structure –SunspotsSunspots –Solar spectrum 1Solar spectrum.
Decomposition rate of benzene increases almost linearly against time, and it tends to be constant around 200s. While the decomposition rate increases,
Satellites and interactions
Hale COLLAGE (CU ASTR-7500) “Topics in Solar Observation Techniques” Lecture 8: Coronal emission line formation Spring 2016, Part 1 of 3: Off-limb coronagraphy.
Radiation Protection and Safety 3/12/ Interactions with Electrons   Energy-loss Mechanisms Electrons and positrons have similar stopping powers.
1 New Instrumentation at NTNU Background Picture from D. Fritts P. J. Espy and R. E. Hibbins Norwegian University of Science and Technology Trondheim,
Variations of the auroral UV emission from Io’s atmosphere Lorenz Roth * J. Saur *, P.D. Feldman, D.F. Strobel, K.D. Retherford * Institute of Geophysics.
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Titan: FUV Limb Spectra From 2004 and EUV Laboratory Cross Sections and Observations JOSEPH AJELLO JPL MICHAEL STEVENS NRL JACQUES GUSTIN LPAP GREG.
Saturn’s Auroras from the Cassini Ultraviolet Imaging Spectrograph Wayne Pryor Robert West Ian Stewart Don Shemansky Joseph Ajello Larry Esposito Joshua.
Titan Airglow: FUV & EUV 2009 UVIS Spectra of Airglow During Day, Night & Eclipse : JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JPL JACQUES GUSTIN.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Scattering controlled photoelectron escape from NEA – photocathodes
Early models to Quantum Model
Kimura, T. , R. P. Kraft, R. F. Elsner, G. Branduardi-Raymont, G. R
RENU 2 UV Measurement of Atomic Oxygen in the Cusp
First Look AT RENU2 PMT DATA
Titan UVIS Airglow Spectra: Modeling and Laboratory Studies
LABORATORY SPECTROSCOPY OF RELEVANCE TO CASSINI UVIS AND ISS
Saturn’s Auroras from the Cassini Ultraviolet Imaging Spectrograph
Chemistry 141 Friday, October 27, 2017 Lecture 22 Light and Matter
Joseph Ajello JPL Alan Heays Leiden Observatory
Titan: FUV & EUV Spectra Limb, Dayglow, Nightglow & Eclipse
Joseph Ajello JPL Greg Holsclaw LASP Todd Bradley UCF Bob West
JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JACQUES GUSTIN LPAP
Jupiter’s Polar Auroral Emisssions
Joseph Ajello JPL Alan Heays Leiden Observatory
Xianming Liu, Paul V. Johnson, Charles P. Malone
Chemistry 141 Monday, October 30, 2017 Lecture 23 Light and Matter
Saturn upper atmosphere structure
Sections 6.1 – 6.3 Electromagnetic Radiation and its Interaction with Atoms Bill Vining SUNY College at Oneonta.
JOSEPH AJELLO JPL MICHAEL STEVENS NRL ROBERT WEST JACQUES GUSTIN LPAP
Graphene Protected Diamondoid Photocathodes
UVIS Calibration Update
Atomic emission spectrum
A New Atomic Model Section 4.1.
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
Atomic Spectra As atoms gain energy their electrons can be excited and absorb energy in discrete amounts called quanta and produce absorption spectrums.
Presentation transcript:

UV Emission of Atomic Oxygen …and why it matters for RENU 2 Bruce Fritz

630.0 nm O (1D  3P) (110 s) 391.4 nm N2+ 557.7 nm O (1S  1D) (~0.7 s)

Partial O I energy-level diagram 130.4 nm 135.6 nm Schulman et al [1985]

Auroral FUV Spectrum Miller et al [1968]

Possible excitation mechanisms Collisional excitation (Radiative) Recombination Resonant excitation Dissociative Recombination Collisional dissociative excitation

Hubble observations Distance to Jupiter ~ 5.3 AU Hall et al [1998]

Cross-section ratio vs. energy 𝑟𝑎𝑡𝑖𝑜= 𝜎(135.6 𝑛𝑚) 𝜎 (130.4 𝑛𝑚) Monoenergetic e- flux Maxwellian e- flux Kanik et al [2003]

Inelastic cross sections for OI 130.4 nm cross section dominant Much larger total cross section Zipf and Stone [1971]

UV PMT Filtered to include both lines

UV PMT

UV PMT

DMSP SSUSI RENU 2 DMSP

RENU 2 trajectory 90° LYR

Continued work Calibration of PMT Correlation of PMT signal with DMSP data

Questions?

References Ajello, Joseph M., Dissociative Excitation of O2 in the Vacuum Ultraviolet by Electron Impact, The Journal of Chemical Physics, 55, 3156-3157 (1971), DOI:http://dx.doi.org/10.1063/1.1676562 Feldman, P. D., M. A. McGrath, D. F. Strobel, H. W. Moos, K. D., Retherford, and B. C. Wolven, HST/STIS ultraviolet imaging of polar aurora on Ganymede, Astrophys. J., 535, 1085– 1090, 2000. Hall, D. T., P. D. Feldman, M. A. McGrath, and D. F. Strobel, The far ultraviolet oxygen airglow of Europa and Ganymede, Astrophys. J., 499, 475–481, 1998. James, G. K., J. M. Ajello, D. E. Shemansky, B. Franklin, D. Siskind, and T. G. Slanger (1988), An investigation of the second negative system of O2 + by electron impact, J. Geophys. Res., 93(A9), 9893–9902, doi:10.1029/JA093iA09p09893. Kanik, I., C. Noren, O. P. Makarov, P. Vattipalle, J. M. Ajello, and D. E. Shemansky, Electron impact dissociative excitation of O2: 2. Absolute emission cross sections of the OI(130.4 nm) and OI(135.6 nm) lines, J. Geophys. Res., 108(E11), 5126, doi:10.1029/2000JE001423, 2003. Miller, R. E., W. G. Fastie, and R. C. Isler (1968), Rocket studies of far-ultraviolet radiation in an aurora, Journal of Geophysical Research, 73(11), 3353{3365, doi:10.1029/JA073i011p03353. Noren, C., Kanik, I., Ajello, J. M., McCartney, P., Makarov, O. P., McClintock, W. E. and Drake, V. A. (2001), Emission cross section of O I (135.6 nm) at 100 eV resulting from electron-impact dissociative excitation of O2. Geophys. Res. Lett., 28: 1379–1382. doi:10.1029/2000GL012577 Shemansky, D. E., J. M. Ajello, and D. T. Hall, Electron impact excitation of H2: Rydberg band systems and the benchmark dissociative cross section for H Lyman-a, Astrophys. J., 296, 765–773, 1985a. W.C. Wells, W.L. Borst, E.C. Zipf, Absolute cross section for the production of O(5S0) by electron impact dissociation of O2, Chemical Physics Letters, Volume 12, Issue 2, 1971, Pages 288-290, ISSN 0009-2614, http://dx.doi.org/10.1016/0009-2614(71)85066-2. Zipf, E. C., and E. J. Stone (1971), Photoelectron excitation of atomic-oxygen resonance radiation in the terrestrial airglow, J. Geophys. Res., 76(28), 6865–6874, doi:10.1029/JA076i028p06865.