ICIS 2017 Conference Alain SIMONIN IRFM, CEA CADARACHE France

Slides:



Advertisements
Similar presentations
T1 task- update Mike Plissi. 2 Collaboration Groups actively involved INFN-VIRGO MAT IGR-Glasgow Groups that have expressed interest INFN-AURIGA CNRS-LKB.
Advertisements

WP-M3 Superconducting Materials PArametric COnverter Detector INFN_Genoa Renzo Parodi.
Thermal properties of laser crystal Rui Zhang ACCL Division V, RF-Gun Group Feb 20, 2015 SuperKEKB Injector Laser RF Gun Review.
TORE SUPRA Association EURATOM-CEA Département de Recherches sur la Fusion Contrôlée CEA - CADARACHE Saint-Paul-lez-Durance FRANCE Nonlinear LH Wave.
Henrik Loos LCLS FAC Meeting 27 October RF Gun Status LCLS Facility Advisory Committee Meeting October 26, 2005 Mechanical.
Numerical investigations of a cylindrical Hall thruster K. Matyash, R. Schneider, O. Kalentev Greifswald University, Greifswald, D-17487, Germany Y. Raitses,
EM Radiation Sources 1. Fundamentals of EM Radiation 2. Light Sources
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Development and validation of numerical models for the optimization of magnetic field configurations in fusion devices Nicolò Marconato Consorzio RFX,
Laser Notcher Pulse Energy Requirements & Demonstration Experiment David Johnson, Todd Johnson, Vic Scarpine.
LCWS Tokyo 13 th Nov Fibre lasers for gamma-gamma colliders Laura Corner John Adams Institute for Accelerator Science, Oxford University, UK.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Study of negative ion surface production in caesium-free H 2 plasma PhD student: Kostiantyn Achkasov Tutors: Gilles Cartry and Alain Simonin 3 rd FUSENET.
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Nils P. Basse Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA USA ABB seminar November 7th, 2005 Measurements.
1 ST workshop 2005 Numerical modeling and experimental study of ICR heating in the spherical tokamak Globus-M O.N.Shcherbinin, F.V.Chernyshev, V.V.Dyachenko,
Initial wave-field measurements in the Material Diagnostic Facility (MDF) Introduction : The Plasma Research Laboratory at the Australian National University.
What are GW’s ?? Fluctuation in the curvature of space time, propagating outward form the source at the speed of light Predicted by Einstein’s GTR Gravitational.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
THE WEST PROJECT AND RELATED ACTIVITIES AT CEA-IRFM 24/09/2012ADAS WORKSHOP | PAGE 1 CEA | 10 AVRIL 2012 R. Guirlet, J. Bucalossi, M. Firdaouss, Y. Marandet,
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
LIGO- G D The LIGO Instruments Stan Whitcomb NSB Meeting LIGO Livingston Observatory 4 February 2004.
Gravitational Wave Detection Using Precision Interferometry Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Development of the Room Temperature CH-DTL in the frame of the HIPPI-CARE Project Gianluigi Clemente,
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
LIGO LaboratoryLIGO-G R Coatings and Their Influence on Thermal Lensing and Compensation in LIGO Phil Willems Coating Workshop, March 21, 2008,
Optical Amplifiers By: Ryan Galloway.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Parametric Instabilities In Advanced Laser Interferometer Gravitational Wave Detectors Li Ju Chunnong Zhao Jerome Degallaix Slavomir Gras David Blair.
ACIGA High Optical Power Test Facility
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
The International Workshop on Thin Films. Padova 9-12 Oct of slides Present Status of the World- wide Fusion Programme and possible applications.
1 Junji Urakawa (KEK, Japan) at PosiPol2012, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
GEO Status and Prospects Harald Lück ILIAS / ETmeeting Cascina November 2008.
SRF COLLABORATION MEETING MAY.2016 ESS MEDIUM BETA CAVITY MANUFACTURING CEA Saclay/ESS ECCTD WU Cavités | Enrico Cenni.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Hanna Frånberg Delahaye Radioactive beam production
Optical Fiber Sensors for Cryogenic applications Presented by: Daniele Inaudi, CTO SMARTEC
Interferometer configurations for Gravitational Wave Detectors
Characterization of Advanced LIGO Core Optics
Mingyun Li & Kevin Lehmann Department of Chemistry and Physics
The Proposed Holographic Noise Experiment
Recent developments of optical cavity systems for advanced photon sources based on Compton backscattering A. Martens, F. Zomer, P. Favier, K. Cassou,
Synopsis by Maria Ruiz-Gonzalez 12/8/16
Progress toward squeeze injection in Enhanced LIGO
Physics design on Injector-1 RFQ
Timing and synchronization at SPARC
Nergis Mavalvala MIT IAU214, August 2002
High Efficiency X-band Klystron Design Study
Injection seeded ns-pulsed Nd:YAG laser at 1116 nm for Fe-Lidar
Advanced LIGO Quantum noise everywhere
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
Flat-Top Beam Profile Cavity Prototype: design and preliminary tests
M4 m4 WHAT IS A TOKAMAK? Graphic: EUROfusion, Reinald Fenke, CC BY 4.0,
Status of LIGO Installation and Commissioning
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
The Gas Dynamic Trap (GDT) Neutron Source
A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon
Squeezed Light Techniques for Gravitational Wave Detection
Physics Design on Injector I
Flat-Top Beam Profile Cavity Prototype
Pierre Favier Laboratoire de l’Accélérateur Linéaire
Advanced Optical Sensing
Sensitivity curves beyond the Advanced detectors
小型X線源の性能確認実験計画 高輝度・RF電子銃研究会 広島大学 高エネルギー加速器研究機構 浦川順治
Optical fiber based sensors for low temperature and superconductors
Presentation transcript:

Ongoing R&D towards a new generation of neutral beam heating systems for future fusion reactors ICIS 2017 Conference Alain SIMONIN IRFM, CEA CADARACHE France GEneva, 16th October 2017 ICIS 2017 Conference / A. Simonin, CEA Cadarache

Steady state Fusion reactor “Recirculating electric power “ Tokamak 3 GW D-T fusion power Balance of the plant ~60 MW 120 MW Power conversion systems Neutral beam system RF 1.7 GW gross Electric power Efficiency ~50% Helium pumps (superconducting coils) ~200 MW Electric power Plasma heating ~ 240 MW Reference: Eurofusion, DEMO2 Alternative_Design_-_March_2015_-__2L4QP3_v1_0 | 2

Recirculating electric power in the Plant ~ 1.2 GW Green electric power on the grid Tokamak ~60 MW 120 MW Neutral beam efficiency ~50% RF 1.7 GW gross Electric power ~ 240 MW ~200 MW Neutral Beam system efficiency  Main penalty on the electricity production and cost Challenge : Achievement of powerful neutral beams with efficiency > 50% ICIS 2017 Conference / A. Simonin, CEA Cadarache | 3

ICIS 2017 Conference / A. Simonin, CEA Cadarache Efficiency of conventional Neutral Beam systems (ITER type) Gas Neutralizer 1 MeV D- beam neutralization on gas target Only 55% of neutralization rate Overall NB system efficiency lower than 28 % The goal of ITER is not to produce electricity ! For future reactors: ITER NBI system efficiency too low ! Need to explore neutralization system with high conversion rate ICIS 2017 Conference / A. Simonin, CEA Cadarache | 4

Beam Photo-neutralization hn D- D0 + e- Photo-neutralization seems ideal No gas injection => Strong reduction of D- losses Potential High neutralization rate (h> 80%) But - Low photo-detachment cross-section ~ 𝟑.𝟔 𝒕𝒐 𝟒.𝟓 . 𝟏𝟎 ^−𝟐𝟏 𝐦 ^𝟐 for l= 1064 nm Photo-neutralization requires photon flux in the MW range ICIS 2017 Conference / A. Simonin, CEA Cadarache

High photon flux  Resonant Fabry-Perot cavity High reflectivity mirrors Resonance  2 L = q l  Constructive interferences Photon power stored within the cavity: Pin= P0 x S P0 = 1 kW, S ~3000, Pin~ 3 MW Pin Cavity amplification S R= 50% L= L0 n Laser P0 R= 99.998 % 𝜹𝝂 Resonance R= 90 % Pin => dn High cavity sensitivity to variations of the optical length: vibrations, etc. ICIS 2017 Conference / A. Simonin, CEA Cadarache

Advanced stabilizing technique Gravitational Waves Detectors (GrWD) Locking of the cavity resonance technique: Pound-Drever-Hall method Cavity Resonance when: 2 L = q l Cavity vibration dL ∝ dl Active feedback on the external Laser wavelength Mature technology : First GrW detected in 2016 on LIGO facilities (USA): dL/L ~10-21 Photo-neutralizer: Requirements on the optical length variation strongly released dL/L~10-12 m Hz-1/2 @ 1 kHz Achievable with available commercial technology ! ICIS 2017 Conference / A. Simonin, CEA Cadarache

Mirror thermo-mechanical deformation under high photon power (CW regime) Mirror coating absorption rate ~ 1 ppm 3 MW of photon power => 3 W of thermal power absorbed by the mirror => Thermal distortion of the mirror surface Laser 3 MW dL ~ 100 nm Mirror temperature distribution Reference: D. Fiorucci; Ph-D thesis Nice-Sophia Antipolis University, Côte d’Azur Observatory Nice, France; June 2015 Mirror distortion (peak 100 nm) => wave deformation => photon scattering (losses) ! Need to implement adaptive optics to keep the mirror planarity ~1 nm range ICIS 2017 Conference / A. Simonin, CEA Cadarache

D- beam sheet crossed by => 86 % photo-detachment Principle of a photo-neutralization Based NB system 3 m 10 cm Ion source & Pre-accelerator Ring cavity (4 mirrors) Amplification: 3000 ~15 m D- beam sheet crossed by 4 photon beams of 3 MW each => 86 % photo-detachment 10A D- beam sheet Width: 1 cm Photo-neutralizer cell at + 1 MV ~ 8 MW of D° at 1 MeV per sheet CW 1 kW Laser ICIS 2017 Conference / A. Simonin, CEA Cadarache

Implantation of the NB system on the reactor (Top view) Tokamak Modular concept Six beamlines in // per tank 45 MW D° per tank Overall efficiency: ~70% NB vacuum Tank Six beam sheet in // per tank Photo-neutralization allows to achieve powerful neutral beam with high efficiency ICIS 2017 Conference / A. Simonin, CEA Cadarache

Implantation of the NB system on the reactor (side view) Bioshield ~ 20 m Tank with mirrors Tokamak hall Nuclear island Photon beam 0.2m Technical gallery 15m 3 m Ion source D-T Plasma 1 MeV D° Technical gallery 15m Basement ICIS 2017 Conference / A. Simonin, CEA Cadarache

Photo-neutralization experiment in cavity 10 kW intra-cavity photon beam Vacuum tank Optical cavity ~1 m H° H- H- beam: 1 keV and 1 mm diameter ICIS 2017 Conference / A. Simonin, CEA Cadarache

Observation of H- and H° on micro-channel detectors Photo-neutralization experiment in cavity Experimental results Photon power 13 kW H- H0 Photon power 0 kW H- Observation of H- and H° on micro-channel detectors Photon power 23 kW H0 H- 50 % photo-detachment achieved in CW regime In agreement with cross section Publication: « Saturation of the photoneutralization of a H- beam in continuous operation »; D. Bresteau, C. Blondel, C. Drag; Rev. Sci. Instrum.; 2017; in press. ICIS 2017 Conference / A. Simonin, CEA Cadarache

Ion source development for photo-neutralization based NB system ICIS 2017 Conference / A. Simonin, CEA Cadarache

Blade-like negative ion source concept Helicon antenna 1 m B D- Co-extracted electrons 1 cm accelerator accelerator D- B Cesium layer Helicon plasma coils 15 cm Magnetized plasma column Side view Horizontal cross section ICIS 2017 Conference / A. Simonin, CEA Cadarache

water-cooled end plate Development of a 10 kW helicon antenna (Bird-cage type) at RAID testbed (EPFL) A 3 kW, 0.3 Pa, B= 12 mT, H2 plasma jet ~1.5 m water-cooled end plate Further details: Talk R. Agnello (EPFL); Tuesday, 17th October; 15h20 ICIS 2017 Conference / A. Simonin, CEA Cadarache

Ion source at IRFM with the helicon antenna 10 kW helicon antenna Ion source 1.2 m high 0.1 m width 1.2 m Accelerator grid Blade-like beam (1 cm width) Lateral coils B~10 mT 10cm First experimental results: Poster I. Morgal (IRFM); Tuesday, 17th October ; 16h00 ICIS 2017 Conference / A. Simonin, CEA Cadarache | PAGE 17 ICIS 2017 Conference / A. Simonin -CEA Cadarache

ICIS 2017 Conference / A. Simonin, CEA Cadarache

Conclusions and perspectives Photo-neutralization is the only commercial solution for steady state reactors: Advanced performances High neutral power: up to 45 MW per beam tank High wall-plug efficiency: ~70 % Perspectives: Up to 2020: Finalise the ongoing feasibility studies Study of the mirror thermal effects and compensation (adaptive optics) Continuation of the R&D on helicon antenna & blade-like beams After 2020: Proposal for a full scale high power (MW range) optical cavity The project would imply the involvement of experts in GrW detectors ICIS 2017 Conference / A. Simonin, CEA Cadarache

Thank for your attention !! Commissariat à l’énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint Paul Lez Durance Cedex T. +33 (0)4 42 25 46 59 | F. +33 (0)4 42 25 64 21 Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019 DSM IRFM Service DSM IRFM Service ICIS 2017 Conference / A. Simonin, CEA Cadarache

3 MW optical cavity specifications 20 cm Mirror F= 10 cm Photon power in cavity: 3 MW Enhancement factor: 3000 Cavity bandwidth: dn~150 Hz Highly stabilized Laser: dn/n ~ 10-24 Ring (recycling) cavity Roundtrip: L0 = 120 m Photon beam width at FWHM: 1cm 30 m D° D- Advanced mirrors: Reflectivity: 99.998 % Planeity: ~1 nm Rugosity: ~0.1 nm Coating absorption rate: < 1 ppm Highly stabilized CW Laser, P0 ~1 kW ICIS 2017 Conference / A. Simonin, CEA Cadarache

Comparison of the main specifications between the GrW detectors and the photo-neutralizer.   GrWD Photo-neutralizer Setup  Two cavities in interference, common mode : frequency reference A single cavity : frequency reference Mechanical vibration mitigation level Achieved < 10-20 m Hz-1/2 @ 100 Hz (limited by fundamental noise) 10-12 m Hz-1/2 @ 1 kHz Stored photon power Achieved: 100 kW on LIGO Advanced LIGO objective: 700 kW 3 MW Cavity Roundtrip: 6000 m (linear cavity) Roundtrip: 120 m (ring cavity) Mirrors Diameter: ~30 cm Planeity: < 0.5 nm RMS over Ø=15 cm Roughness: < 0.1 nm RMS Coating absorption: 1 ppm Diameter: 10 cm Planeity: 1 nm RMS over Ø=5 cm Roughness: 0.1 nm RMS Coating absorption: 1 ppm External CW Laser (l=1064 nm) Power : 200 W Single mode, single frequency, Locked on the cavity Power : 1000 W Color code: green: available technology; red: future R&D objectives ICIS 2017 Conference / A. Simonin, CEA Cadarache

Superposition of the two signals Detection level: dL ~10-21 m Gravitational Waves detection in 2016 Image Credit: Caltech/MIT/LIGO Lab Signals of GrW detected by the twin LIGO observatories: -) Livingston, Louisiana -) Hanford, Washington Superposition of the two signals Same event Detection level: dL ~10-21 m ICIS 2017 Conference / A. Simonin, CEA Cadarache

Laplace laboratory (Toulouse, France) Development of numerical models for Cybele Physics of the magnetized plasma column Physics of the negative ion extraction H- beam extraction 2D simulation PIC MCC model of the magnetized plasma column (Horizontal cross section) B E Diamagnetic plasma rotation E x B B=7 mT, E ~1 V/cm Validation by experiment on Cybele 2D simulation PIC MCC model of the negative ion extraction from the magnetized plasma (side vie ICIS 2017 Conference / A. Simonin, CEA Cadarache