Technische Universität München A digital calorimetric trigger for the COMPASS experiment at CERN Markus Krämer J. Friedrich, S. Huber, B. Ketzer, I. Konorov,

Slides:



Advertisements
Similar presentations
INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Testbeam results of the CMS electromagnetic calorimeter Alessio Ghezzi.
Advertisements

NA62, 21 October 2010V.Polyakov, Shashlik calorimeter1 Radiation hard Shashlik calorimeter for COMPASS experiment Vladimir Polyakov Institute for High.
Trigger & DAQ Ole Hansen SBS Collaboration Meeting 19 March 2010.
TDC130: High performance Time to Digital Converter in 130 nm
Technische Universität München Status report on SADC feature extraction.
6 Mar 2002Readout electronics1 Back to the drawing board Paul Dauncey Imperial College Outline: Real system New VFE chip A simple system Some questions.
An SiPM Based Readout for the sPHENIX Calorimeters Eric J. Mannel IEEE NSS/MIC October 30, 2013.
Adding electronic noise and pedestals to the CALICE simulation LCWS 19 – 23 rd April Catherine Fry (working with D Bowerman) Imperial College London.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
TileCal Electronics A Status Report J. Pilcher 17-Sept-1998.
MICE Tracker Front End Progress Tracker Data Readout Basics Progress in Increasing Fraction of Muons Tracker Can Record Determination of Recordable Muons.
28 August 2002Paul Dauncey1 Readout electronics for the CALICE ECAL and tile HCAL Paul Dauncey Imperial College, University of London, UK For the CALICE-UK.
DSP online algorithms for the ATLAS TileCal Read Out Drivers Cristobal Cuenca Almenar IFIC (University of Valencia-CSIC)
6 June 2002UK/HCAL common issues1 Paul Dauncey Imperial College Outline: UK commitments Trigger issues DAQ issues Readout electronics issues Many more.
A N DY Trigger and DAQ System A N DY Review Chris Perkins UC Berkeley/Space Sciences Laboratory Stony Brook University 11/08/2011.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Shashlik type calorimeter for SHIP experiment
E906/Drell-Yan: Monte Carlo, Data Acquisition and Data Analysis Paul E. Reimer Expected Rates and Monte Carlo (WBS 2.5.1) Data Acquisition (WBS 2.4) –CODA.
Hall A DAQ status and upgrade plans Alexandre Camsonne Hall A Jefferson Laboratory Hall A collaboration meeting June 10 th 2011.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
28/03/2003Julie PRAST, LAPP CNRS, FRANCE 1 The ATLAS Liquid Argon Calorimeters ReadOut Drivers A 600 MHz TMS320C6414 DSPs based design.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
Understanding the Origin of the Nucleon Spin Andi Klein, Melynda Brooks, Pat McGaughey and Matt Stettler Research Goals: Use Deeply Virtual Compton Scattering.
Algorithms for the ROD DSP of the ATLAS Hadronic Tile Calorimeter
Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ LPSC Grenoble EINN 2005September 23 rd 2005.
Dec.11, 2008 ECL parallel session, Super B1 Results of the run with the new electronics A.Kuzmin, Yu.Usov, V.Shebalin, B.Shwartz 1.New electronics configuration.
Shashlyk FE-DAQ requirements Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA FE-DAQ workshop, Bodenmais April 2009.
January 31, MICE DAQ MICE and ISIS Introduction MICE Detector Front End Electronics Software and MICE DAQ Architecture MICE Triggers Status and Schedule.
Sebastian Schopferer University of Freiburg IEEE RT 2010, Lisboa Development and Performance Verification of the GANDALF High-Resolution Transient Recorder.
Jefferson Laboratory Hall A SuperBigBite Spectrometer Data Acquisition System Alexandre Camsonne APS DNP 2013 October 24 th 2013 Hall A Jefferson Laboratory.
B.G.Cheon Mini-Trigger/DAQ workshop,OCU ECL Trigger overview ByungGu Cheon (SKKU) Outline  ECL calorimeter  ECL trigger scheme & performance.
1 Calorimeters LED control LHCb CALO meeting Anatoli Konoplyannikov /ITEP/ Status of the calorimeters LV power supply and ECS control Status of.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
09/10/2010 RD51 Collaboration Meeting Cisbani-Musico-Minutoli / Status JLab Electronics 1 Status of the APV25 electronics for the GEM tracker at JLab Evaristo.
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
11 October 2002Paul Dauncey - CDR Introduction1 CDR Introduction and Overview Paul Dauncey Imperial College London.
CALO Meeting–September 2 nd 2015 Calorimeter Upgrade Electronics: June 2015 Test Beam E. Picatoste Universitat de Barcelona, Institut de Ciències del Cosmos.
Pisa - Apr. 28th, The Trigger System Marco Grassi INFN - Pisa.
RD51 GEM Telescope: results from June 2010 test beam and work in progress Matteo Alfonsi on behalf of CERN GDD group and Siena/PISA INFN group.
HCAL1 Status 2004 Oleg Gavrishchuk, JINR, Dubna 1. HCAL1 performance in 2004 General design High Voltage system LED monitoring 2. Stability in 2003 Led.
1/28 VISITS TO COMPASS / NA58 Seminar for guides 9 March 2005 Susanne Koblitz Gerhard Mallot.
1 Timing of the calorimeter monitoring signals 1.Introduction 2.LED trigger signal timing * propagation delay of the broadcast calibration command * calibration.
FPGA based signal processing for the LHCb Vertex detector and Silicon Tracker Guido Haefeli EPFL, Lausanne Vertex 2005 November 7-11, 2005 Chuzenji Lake,
Trigger system for setup 2016 V. Rogov, V. Yurevich,D.Bogoslovski, S.Sergeev, O.Batenkov* LHEP JINR *V. G. Khlopin Radium Institute, St. Petersburg.
Super BigBite DAQ & Trigger Jens-Ole Hansen Hall A Collaboration Meeting 16 December 2009.
3/06/06 CALOR 06Alexandre Zabi - Imperial College1 CMS ECAL Performance: Test Beam Results Alexandre Zabi on behalf of the CMS ECAL Group CMS ECAL.
Analog Trigger for CTA MST CTA MST Trigger & Integration Meeting Berlin, 7 November 2011 Luis A. Tejedor on behalf of GAE-UCM, IFAE & CIEMAT groups 1.
29/05/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
The LHCb Calorimeter Triggers LAL Orsay and INFN Bologna.
DAQ and Trigger for HPS run Sergey Boyarinov JLAB July 11, Requirements and available test results 2. DAQ status 3. Trigger system status and upgrades.
EPS HEP 2007 Manchester -- Thilo Pauly July The ATLAS Level-1 Trigger Overview and Status Report including Cosmic-Ray Commissioning Thilo.
K + → p + nn The NA62 liquid krypton electromagnetic calorimeter Level 0 trigger V. Bonaiuto (a), A. Fucci (b), G. Paoluzzi (b), A. Salamon (b), G. Salina.
COMPASS calorimeters S. Platchkov IRFU, CEA-Saclay GDR, 8-9 avril 2008
DAQ ACQUISITION FOR THE dE/dX DETECTOR
Digital Trigger System for the COMPASS Experiment
MoNA detector physics How to detect neutrons. Thomas Baumann NSCL.
Resolution Studies of the CMS ECAL in the 2003 Test Beam
PSD Front-End-Electronics A.Ivashkin, V.Marin (INR, Moscow)
Mini-Trigger/DAQ workshop,OCU
Muon Recording Studies and Progress for the MICE Tracker
Example of DAQ Trigger issues for the SoLID experiment
BESIII EMC electronics
Project Presentations August 5th, 2004
Commissioning of the ALICE-PHOS trigger
LHCb Trigger, Online and related Electronics
The Trigger System Marco Grassi INFN - Pisa
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
August 19th 2013 Alexandre Camsonne
The LHCb Front-end Electronics System Status and Future Development
Presentation transcript:

Technische Universität München A digital calorimetric trigger for the COMPASS experiment at CERN Markus Krämer J. Friedrich, S. Huber, B. Ketzer, I. Konorov, A. Mann, S. Paul Physik-Department E18, TU-München

Technische Universität München 23 September 2009Markus Krämer Overview The COMPASS experiment at CERN Motivation The electromagnetic calorimeter of COMPASS Digital contra analog trigger Trigger concept Trigger implementation Monitoring of the calorimetric trigger Conclusion/Outline

Technische Universität München 23 September 2009Markus Krämer The COMPASS experiment at CERN Overview Common Muon and Proton Apparatus for Structure and Spectroscopy Fixed target experiment Super Proton Synchrotron at CERN Physics program Spin structure of the nucleon muon beam: up to 5·10 7 /s Hadron spectroscopy hadron beam: up to 5·10 6 /s

Technische Universität München 23 September 2009Markus Krämer The COMPASS Experiment at CERN Setup: Two-stage magnetic spectrometer Data taking since 2002 Detectors Tracking: Silicon, GEM, SciFi, MicroMegas, MWPC, DC, … Calorimetry: ECAL, HCAL PID: RICH, Wall

Technische Universität München 23 September 2009Markus Krämer Motivation Reactions producing a hard photon Primakoff p p DVCS Deeply virtual Compton scattering Trigger on electromagnetic calorimeter (ECAL)

Technische Universität München 23 September 2009Markus Krämer ECAL2 Size: 2.44m×1.83m 3068 Cells (64×48 - 2×2): –860 Shashlik modules –2208 GAMS modules 3072 Channels read out by Mezzanine Sampling ADC (MSADC)

Technische Universität München 23 September 2009Markus Krämer 12 bit SADC architecture Mezzanine SADC –16/32 channels –12 bit –80/40 MHz –Virtex4 CC4MSADC –Virtex4 –USB –HotLink –TCS receiver –Power supplies –4 MSADC cards –64 channels –12 bit –80 MHz RJ45/HL USB

Technische Universität München 23 September 2009Markus Krämer Mezzanine sampling ADC Pulse recorded with 70 GeV/c e - -beam Sampling rate: 80MHz

Technische Universität München 23 September 2009Markus Krämer Comparison of digital and analog trigger implementation Advantages of a digital trigger –More complex trigger logic achievable Improved noise suppression Amplitude normalization Geometry (multi geometry settings possible) –Flexible settings (programmable) Timing of channels Thresholds Calibrations –Better access in offline analysis Monte Carlo Trigger decision –High integration Integrated into the readout system

Technische Universität München 23 September 2009Markus Krämer Trigger concept Energy summation over all included calorimeter channels –2009: 16×16 central channels –Future: Extend to all 3068 channels of the calorimeter Trigger on events using a threshold on the total energy sum –Currently aimed at 20-40GeV (190GeV beam energy) On channel level: –Signal detection/zero suppression (constant fraction algorithm) –Time calculation and latency adjustment –Energy calibration Implementation: –Pipeline algorithm for FPGA (on MSADCs) –Parallel to readout logic on same FPGAs

Technische Universität München 23 September 2009Markus Krämer Hardware overview Mezzanine Card: –Channel level: Signal detection/zero suppression Time extraction Energy conversion –Sum over 16 Channels VME module: –Sum over 64 PMs –Output to backplane Backplane summation cards Using Mezzanine form factor Final summation Applying threshold (output NIM) Extendable by interconnection

Technische Universität München 23 September 2009Markus Krämer Channel level computation Pedestal subtraction –Pedestals updated upon each spill Constant fraction discriminator plus threshold –Signal detection/zero suppression –Time calculation –Amplitude extraction –Configurable Energy conversion –Using energy calibrations on channel base –Continuously monitored (online data processing) Correct latency –Using time calibrations on channel base –Continuously monitored (online data processing)

Technische Universität München 23 September 2009Markus Krämer Signal Time extraction Constant fraction discriminator B[i] = kA[i] – A[i+N] Coarse Time : B[i] > 0 & B[i+1] 0 Fine Time : dt = B[i]/(B[i] - B[i+1]) Trigger if A[i+M] is over threshold A[i+M] taken as signal amplitude (if triggered) B[i] B[i+1]

Technische Universität München 23 September 2009Markus Krämer Channel level computation Pedestal subtraction –Pedestal updated upon each spill Constant fraction discriminator plus threshold –Signal detection/zero suppression –Time calculation –Amplitude extraction –Configurable Energy calibration –Using energy calibrations for each individual channel –Continuously monitored (online data processing) Correct time dispersion of channels –Using time calibrations on channel base –Continuously monitored (online data processing)

Technische Universität München 23 September 2009Markus Krämer t 0.9 ns Amplitude cut: 20 ADC channels 600 MeV Real data 3068 channels

Technische Universität München 23 September 2009Markus Krämer Implementation on Mezzanine card 16 x + Sum 16

Technische Universität München 23 September 2009Markus Krämer Hardware overview Mezzanine Card: –Channel level: Signal detection/zero suppression Time extraction Energy conversion –Sum over 16 Channels VME module: –Sum over 64 Channels –Output to backplane Backplane summation cards Using Mezzanine form factor Final summation Applying threshold (output NIM) Extendable by interconnection

Technische Universität München 23 September 2009Markus Krämer Hardware overview Mezzanine Card: –Channel level: Signal detection/zero suppression Time extraction Energy conversion –Sum over 16 Channels VME module: –Sum over 64 Channels –Output to backplane Backplane summation cards Final summation Apply threshold (output NIM) Extendable by interconnection

Technische Universität München 23 September 2009Markus Krämer System architecture in x 9U ADC modules 8 x 64 = 512 channels Backplane summation card =>t, A Σ At(1:4) =>t, A Σ At(1:16) 16 8 bit E resolution =>t, A Σ At(1:16) 16 =>t, A Σ At(1:16) 16 =>t, A Σ At(1:16) bit E resolution =>t, A Σ At(1:4) =>t, A Σ At(1:16) 16 8 bit E resolution =>t, A Σ At(1:16) 16 =>t, A Σ At(1:16) 16 =>t, A Σ At(1:16) bit E resolution =>t, A Σ At(1:4) =>t, A Σ At(1:16) 16 8 bit E resolution =>t, A Σ At(1:16) 16 =>t, A Σ At(1:16) 16 =>t, A Σ At(1:16) bit E resolution =>t, A Σ A(1:4) =>t, A Σ A(1:16) 16 Parallel interfaces 12 bit resolution =>t, A Σ A(1:16) 16 =>t, A Σ A(1:16) 16 =>t, A Σ A(1:16) 16 Parallel interfaces over VME backplane 12 bit resolution NIM Trigger 80 MHz 9U ADC module 4 x MSADC

Technische Universität München 23 September 2009Markus Krämer Monitoring Monitor and generate calibration constants continuously –Using online data processing (PC farm) –Monitor LED pulses to adjust energy calibrations –Extract timing of channels –Updated once per run (about 2h) Stored values in VME registers –Independent communication –Scaler (channel) –Current pedestals –Readout once per spill Hit Time and Amplitude added to corresponding event into data stream for online/offline analysis

Technische Universität München 23 September 2009Markus Krämer Conclusion/Outlook Digital trigger logic on FPGA –Implemented on electronics developed for ECAL readout (12bit, 80MHz SADC) –Pipelined CFD based algorithm –Time resolution better than 1ns –Architecture scalable –Expected trigger rates for COMPASS ca. threshold (190GeV/c hadron beam) Schedule –Start of project mid December 2008 –Test beam end of August 2009 (Analysis of data is currently ongoing) –First use in COMPASS foreseen for mid October 2009 Upgrade options for future improvements –Include complete calorimeter (multiple summation ranges) –Clustering (improved noise suppression and energy calculation)

Technische Universität München Thank you for your attention!

Technische Universität München 23 September 2009Markus Krämer Conditions: –Beam: Intensity: 5·10 6 /s Particles: - Momentum: 190GeV/c –Target: Cu 3.5 mm 24% X 0 2.3% I Rates from simulation: Expected Trigger-Rates for ECAL2 (no coincidence)

Technische Universität München 23 September 2009Markus Krämer Energy comparison between online (FPGA) and offline (float)

Technische Universität München 23 September 2009Markus Krämer Time constrains for trigger (estimation) Time of flight (Target to ECAL2):115 ns Signal generation (Detection to ADC):120 ns ADC digitalization:200 ns Run time trigger signal to trigger barrack:200 ns Trigger decision in FPGA clock cycles –Channel computation: 1-3 (depends on implementation, might be combined with digitalization) –Delay to synchronize signals: 1-3 (foreseen, synchronizes most channels) –Mezzanine (Sum over 16 channels): 3 (might even be combined with earlier) –VME module (Sum over 64channels): 2 –Sum over all channels: <=1 12·12.5 ns = 150 ns Needed are 765 ns to make decision. Currently there are about 500 ns to take a trigger decision. Increase to 1 s to be on the save side. Digital trigger achievable with current ECAL2 electronics!!!

Technische Universität München 23 September 2009Markus Krämer Energy studies CORAL Cluster Energy Threshold: 0.0 GeV

Technische Universität München 23 September 2009Markus Krämer Energy studies CORAL Cluster Energy Threshold: 2.5 GeV

Technische Universität München 23 September 2009Markus Krämer Energy studies CORAL Cluster Energy Threshold: 5.0 GeV

Technische Universität München 23 September 2009Markus Krämer Energy studies CORAL Cluster Energy Threshold: 10.0 GeV