Andreas Knecht1ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 A Gravitational Spectrometer for Ultracold Neutrons Andreas Knecht Paul Scherrer Institut.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

NUCP 2371 Radiation Measurements II
Radiation Detection ionization chambers (dosimeters, pulse chambers, particle track chambers) scintillation detectors semiconductor detectors photographic.
Chris Parkes University of Manchester Part VI Concluding Remarks 1)Other flavour physics / CPV searches 2)Overall Constraints on CKM Triangle.
Towards next generation fundamental precision measurements with muons
Neutron detectors and spectrometers 1) Complicated reactions → strong dependency of efficiency on energy 2) Small efficiency → necessity of large volumes.
5 MeV Mott Measurement for CEBAF Operations group Joe Grames, Marcy Stutzman February 14 th, 2007 Sir Nevill F. Mott at the ceremony with his Nobel Prize.
outline introduction experimental setup & status
IKON7, Instrument clip session, September 2014, ESS Headquarters and Medicon Village, Lund, Sweden A cold neutron beamline for Particle
Scint. Al Internal reflection External reflection ↑ ↑ ↑ Decay Detector Development for Giant Resonance Studies By: Gus Olson Mentor: Dr. D.H.Youngblood.
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Philip Harris University of Sussex (for the EDM Collaboration) The Neutron EDM Experiments at the ILL.
Basic Measurements: What do we want to measure? Prof. Robin D. Erbacher University of California, Davis References: R. Fernow, Introduction to Experimental.
Lepton Moments 2014 Craigville 07/22/2014 P. Schmidt-Wellenburg PSI Searching for the electric dipole moment of the neutron.
Study of the Time-Reversal Violation with neutrons
1 Neutron Electric Dipole Moment Experiment Jen-Chieh Peng International Workshop on “High Energy Physics in the LHC Era” Valparaiso, Chile, December 11-15,
Characterization of CF 4 primary scintillation Andrey Morozov.
TOF Mass Spectrometer &
UCN optics, polarization foils and spinflipper for the munich nEDM approach Thorsten Lauer.
Mass Spectrometry Brief introduction (part1) I. Sivacekflerovlab.jinr.ru 2012 Student Practice in JINR Fields of Research 1.oct.2012.
The n 3 He Experiment Probing the Hadronic Weak Interaction Abstract: Although QCD has had tremendous success in describing the strong interaction at high.
Electric Dipole Moment of Neutron and Neutrinos
Energy Resolution of a Parallel- Plate-Avalanche-Chamber Kausteya Roy Professors E. Norbeck and Y. Onel.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
1/30Peter Fierlinger FERMILAB Diamond-like Carbon for Ultra-cold Neutrons Peter Fierlinger.
The search for deeply bound kaonic nuclear states at J-PARC Toshihiko Hiraiwa Kyoto University On behalf of the J-PARC E15 collaboration.
An experimental limit on neutron mirror-neutron oscillation Ulrich Schmidt Physikalisches Institut, Universität Heidelberg, Germany.
Fundamental Physics With Cold and Ultra-cold Neutrons Albert Young North Carolina State University.
Deuteron Polarimeter for Electric Dipole Moment Search Ed Stephenson Indiana University Cyclotron Facility DIPOLES: μ·B + ־ reverse time + ־ d·Ed·E commonplace.
LOGO The η -mass measurement with the Crystal Ball at MAMI A. Nikolaev for the Crystal MAMI and A2 Collaborations Helmholtz Institut für Strahlen-
Mitglied der Helmholtz-Gemeinschaft July 2015 | Hans Ströher (Forschungszentrum Jülich) EPS Conference on High Energy Physics, July 2015, Vienna.
Normalization of the NPDGamma Experimental Data F. Simmons, C. Crawford University of Kentucky, for the NPDGamma collaboration Background: NPDγ Experiment.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
 Lori Rebenitsch University of Winnipeg June 17,
1 TRD-prototype test at KEK-FTBL 11/29/07~12/6 Univ. of Tsukuba Hiroki Yokoyama The TRD prototype is borrowed from GSI group (thanks Anton).
Separate production cell. Geometry and dimensions If the filling time is much shorter then the accumulation time then maximum of UCN density in the measurement.
DOE 2/11/05 #1 EDM R&D Progress Steve Lamoreaux, Los Alamos Co-spokesperson for the EDM Project for presentation to The Department of Energy Cost & Schedule.
The aSPECT collaboration: Institut für Physik, Universität Mainz, Germany: F. Ayala Guardia, M. Borg, F. Glück, W. Heil, G. Konrad, N. Luquero Llopis,
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
B Grants-in-aid KIBAN-B (FY2014~) Magnetic Dipole Moment g-2 Electric Dipole Moment EDM Utilize high intensity.
CryoEDM – A Cryogenic Neutron-EDM Experiment Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus … but before: some.
J. Kohlbrecher, Polarized Solid Targets, Honnef 2003 Dynamics Of Nuclear Spin Polarization J. Kohlbrecher Paul Scherrer Institute CH-5232 Villigen Switzerland.
Particle Physics with Slow Neutrons ILNGS Summer Institute, September 2005Torsten Soldner Particle Physics with Slow Neutrons I: Neutrons in the Standard.
Electric dipole moment searches E.A. Hinds Birmingham 11 th July 2011 Centre for Cold Matter Imperial College London.
Contents Introduction (motivation of precise measurements of neutron lifetime, history of experimental accuracy improvement). a. Result of neutron lifetime.
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors C. Woody B.Azmuon 1, A Caccavano 1, Z.Citron 2, M.Durham 2, T.Hemmick 2, J.Kamin.
Mesure du moment électrique dipolaire du neutron Oscar Naviliat-Cuncic LPC-Caen et Université de Caen Basse-Normandie Journée de la division Champs et.
Mott Electron Polarization Results Riad Suleiman July 10, 2013.
KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to.
ESS Detector Group Seminar Edoardo Rossi 14th August 2015
Ultra-Cold Neutron Group in Kellogg Lab - Neutron Electric Dipole Moment (EDM) Experiment - Search for new CP violation - Neutron Decay - Precision measurements.
Yannis K. Semertzidis Brookhaven National Laboratory New opportunities at CERN CERN, 12 May 2009 Storage Ring EDM Experiments The storage ring method can.
– + + – Search for the μEDM using a compact storage ring A. Adelmann 1, K. Kirch 1, C.J.G. Onderwater 2, T. Schietinger 1, A. Streun 1 1 Paul Scherrer.
Latest results from the superfluid-helium UCN source SUN2 at ILL
Precision experiments
ICNPF 2013, Crete, Aug. 28 – Sept. 5, 2013 JEDI - The Jülich Electric Dipole Moment Investigations in Storage Rings | H. Ströher.
Shape parameterization
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Acknowledgements Slides and animations were made by Dr. Jon Karty Mass Spectrometry Facility Indiana University, Bloomington.
ultracold neutron source
A new simultaneous spin analyser (USSA) for the PSI nEDM experiment
University of Manchester
Read-Out Electronics: where data come from
Siara Fabbri University of Manchester
Gravitational Quantum States of Antihydrogen
Big Gravitational Trap for neutron lifetime measurements
Several themes are recurrent
FRIB Topical Program: Hadronic EDM
Presentation transcript:

Andreas Knecht1ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 A Gravitational Spectrometer for Ultracold Neutrons Andreas Knecht Paul Scherrer Institut & Universität Zürich

Andreas Knecht2ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Outline Ultracold Neutrons Neutron Electric Dipole Moment UCN Detection & Standard Techniques for Determining UCN Velocities Test of an Efficient Gravitational Spectrometer for Ultracold Neutrons

Andreas Knecht3ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Ultracold Neutrons Neutrons with properties: Kinetic energy E < 300 neV Velocity v < 7.5 m/s Wavelenghts λ > 500 Ǻ Temperature T < 3 mK Interactions: Gravitational: V g = mgh = 100 neV/m Magnetic: V m = -μB = 60 neV/T Strong: Fermi potential depending on material; V F up to 350 neV Weak: n p + e + ν

Andreas Knecht4ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 nEDM An EDM couples to an electric field as a MDM couples to a magnetic field: Measure EDM from the difference of precession frequencies for parallel/ anti-parallel fields: Non-zero EDM violates both parity P and time reversal T violates also CP understand mechanism of CP violation understand baryon asymmetry

Andreas Knecht5ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 nEDM Current best limit: d n < 2.9× ecm (Sussex-RAL-ILL) -e +e 1μm1μm

Andreas Knecht6ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Systematics Several systematic effects exist in nEDM measurements which depend on the velocity of UCN (e.g. systematics stemming from magnetic field gradient) Measure nEDM as a function of velocity Need an efficient velocity dependent UCN detection system in order to reach statistics Two scenarios: No velocity dependence observable in measured EDM false velocity-dependent EDM effects under control Velocity dependence observable extrapolate to zero velocity

Andreas Knecht7ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 UCN Detection UCN are neutral and have only tiny kinetic energies convert them into charged products information on UCN velocity is lost in this process Most widely used reactions: 10 B + n 7 Li + α + 2.3/2.8 MeV 6 Li + n 3 H + α MeV 3 He + n 3 H + p MeV Charged decay products are detected with standard scintillators or proportional gas counters. Pulse height spectrum of 10 B-reaction 7 Li noise

Andreas Knecht8ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Standard Techniques Time-of-flight spectrometryAbsorbers at different heights Transmission through foils with different Fermi potentials absorbing gas at different pressures magnetic fields of different strengths inverted-U" shaped UCN guide UCN Measurement of the reach in the gravitational field

Andreas Knecht9ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Efficient Gravitational Spectrometer Inclined UCN guide with 4 attached detectors at different heights Large diameter of main guide: 230 mm reduces back diffusion (~10%) Guides made from NiMo coated plexiglas Extract spectrum from distribution over the 4 detectors UCN

Andreas Knecht10ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Simulation

Andreas Knecht11ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Setup at ILL 1) PF2/TES beamline at ILL 2) U-guide for calibration 3) Gas cell for calibration 4) Input guide into spectrometer 5) Main spectrometer guide 6)-9) UCN detectors ) Vacuum equipment

Andreas Knecht12ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Tests with U Step in count rates due to U with different lengths Problems with slits while turning the U

Andreas Knecht13ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Tests with U independent of slit and related effects change in spectrum clearly visible

Andreas Knecht14ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Tests with Gas Cell Gas type: 3 He (also N 2, O 2, Ar) Exponential fit: exp(-p/π i ) σ abs ~ 1/v π i ~ v π 1 = 3.586(7) mbar π 2 = 3.422(3) mbar π 3 = 3.321(3) mbar π 4 = 3.258(3) mbar change of average velocity in the different detectors

Andreas Knecht15ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Conclusion & Outlook Determination of UCN velocity is a way to control veloctiy dependent systematics in nEDM measurements Successful test of an efficient velocity dependent UCN detection system Analysis ongoing… Need to characterise system and tune simulation to the data

Andreas Knecht16ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 Backup

Andreas Knecht17ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 TOF Measurements Spectra after U-guide, gas cell and of the direct beam also measured using TOF technique.

Andreas Knecht18ZH Doktorandenseminar 2009, 4. – 5. Juni 2009 nEDM Mercury used to monitor B- field fluctuations via ω=γB. Frequency visible as oscillating signal on PMT. B1B1 + B0B0 ±E±E B0B0 ±E±E B0B0 ±E±E L B1B1 + B0B0 ±E±E