KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik www.kit.edu.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advanced Piloting Cruise Plot.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 5 Author: Julia Richards and R. Scott Hawley.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
Summary of Convergence Tests for Series and Solved Problems
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
ZMQS ZMQS
ABC Technology Project
1 Undirected Breadth First Search F A BCG DE H 2 F A BCG DE H Queue: A get Undiscovered Fringe Finished Active 0 distance from A visit(A)
2 |SharePoint Saturday New York City
© Charles van Marrewijk, An Introduction to Geographical Economics Brakman, Garretsen, and Van Marrewijk.
VOORBLAD.
Squares and Square Root WALK. Solve each problem REVIEW:
© 2012 National Heart Foundation of Australia. Slide 2.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Sets Sets © 2005 Richard A. Medeiros next Patterns.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Benjamin Banneker Charter Academy of Technology Making AYP Benjamin Banneker Charter Academy of Technology Making AYP.
Addition 1’s to 20.
25 seconds left…...
Subtraction: Adding UP
Equal or Not. Equal or Not
Test B, 100 Subtraction Facts
Januar MDMDFSSMDMDFSSS
Week 1.
Number bonds to 10,
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
1 Unit 1 Kinematics Chapter 1 Day
PSSA Preparation.
8 th RD50 Workshop Prague June Università degli Studi Università degli Studi di Perugia di Perugia 1 Annealing effects on p + n junction 4H-SiC.
1 PART 1 ILLUSTRATION OF DOCUMENTS  Brief introduction to the documents contained in the envelope  Detailed clarification of the documents content.
October 2001General Tracker Meeting IEKP - Universität Karlsruhe (TH) 1 Results on proton irradiation tests in Karlsruhe F. Hartmann IEKP - Universität.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
Edge-TCT and Alibava measurements with pion and neutron irradiated micro-strip detectors V. Cindro 1, G. Kramberger 1, I. Mandić 1, M. Mikuž 1,2, M. Milovanović.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK
Charge Collection Study of Heavily Irradiated Silicon Microstrip Detectors Chris Lucas (University of Bristol) Irena Dolenc Kittelmann, Michael Moll, Nicola.
Effects of long term annealing in p-type strip detectors irradiated with neutrons to Φ eq =1·10 16 cm -2, investigated by Edge-TCT V. Cindro 1, G. Kramberger.
Joachim Erfle Summary of measurements after first irradiation of HPK samples 19 th RD50 Workshop November 2011 CERN Joachim.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
Edge-TCT studies of heavily irradiated strip detectors V. Cindro 1, G. Kramberger 1, A. Macchiolo 3, I. Mandić 1, M. Mikuž 1,2, M. Milovanović 1, P. Weigell.
Annealing of CCE in HPK strip detectors irradiated with pions and neutrons Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko.
Update on charge collection annealing G. Casse, A. Affolder, P. P. Allport, V. Chmill, D. Forshaw, A. Greenall, I. Tsurin, T. Huse, 1 G. Casse,19th RD50,
Charge Collection, Power, and Annealing Behaviour of Planar Silicon Detectors after Reactor Neutron, Pion and Proton Doses up to 1.6×10 16 n eq cm -2 A.
Summary of Liverpool CC(V) Measurements A. Affolder, P. Allport, H. Brown, G. Casse, V. Chmill, D. Forshaw, T. Huse, I. Tsurin, M. Wormold University of.
Annealing effects in irradiated HPK strip detectors measured with SCT128 chip Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1,Gregor Kramberger 1, Marko.
Annealing effects in irradiated HPK strip detectors measured with SCT128 chip Igor Mandić 1, Vladimir Cindro 1, Gregor Kramberger 1, Marko Zavrtanik 1,
Investigation of the effects of thickness, pitch and manufacturer on charge multiplication properties of highly irradiated n-in-p FZ silicon strips A.
Update on Annealing Studies for Severely Irradiated Silicon Detectors
Presentation transcript:

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik A comparative study of mixed irradiated silicon strip sensors 19 th RD50 Workshop – Florian Petry, Robert Eber T. Barvich, F. Bögelspacher, W. de Boer, A. Dierlamm, A. Kornmayer, Th. Müller, P. Steck

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Ingredients for the study Introduction Sensors Mixed irradiation scheme Annealing procedure ALiBaVa measuremets Results Charge collection Signal to noise ratio Leakage current Summary

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Sensor overview Sensor thickness: 300µm 5 sensors of each material MaterialTypePitch (µm)Manufacturer FZp-in-n50 (5)HIP FZn-in-p (p-spray)80 (5)Micron MCzp-in-n50 (5)HIP MCzn-in-p (p-spray)50(1), 80(3), 100(1)Micron

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Irradiation Mixed irradiation with protons and neutrons Chose 5 fluence mixtures corresponding to 5 different radii in the CMS Tracker after 3000fb -1 Irradiation with Protons in Karlsuhe ZAG: Cyclotron, 23MeV protons Irradiation with neutrons in Louvain-la-Neuve Neutron generation by shooting deuterons on Be target 1 step only neutron irradiation Radius (cm) Total fluence (n eq /cm 2 ) Neutron (n eq /cm 2 ) Proton (n eq /cm 2 ) 51.2* * * * * * * * * * * *10 14 >1204.0*

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Annealing Logarithmic annealing steps to observe short term (beneficial) annealing long term (reverse) annealing Temperature (°C) Duration (min) Annealing (d) M.Moll, phd thesis, Hamburg, 1999

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Parameterisation of charge collection Beneficial annealing Reverse annealing Stable damage

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Measurement Measurement Setup: 2 ALiBaVa stations in Karlsruhe 90 Sr source Signal Signal to noise ratio Leakage current Temperature: -20°C (-30°C) Voltage 0V – 1000V Cuts Seed: S/N > 5 Neighbour: S/N > 2 Total error on measurements: 2.5% Error on irradiated fluence > 10% The small ALiBaVa station HV Pre-cooling DB Scintillator Sensor

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Measurement Results Parameters T = -20°C V = 900V

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Charge collection P-type materials collect more charge than n-type materials FZ-n shows highest dependence on annealing time Large drop in charge collection after (reverse annealing) Only small dependence of charge collection on annealing time for other materials P N P N Increasing fluence

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Charge collection 1.8*10 15 n eq /cm 2 FZ-p shows largest charge collection Charge multiplication for large annealing (charge > e-) MCz: almost no dependence on annealing time 1.2*10 16 n eq /cm 2 FZ-n: No signal at highest fluence for all annealing steps FZ-p: rise in signal for long annealing time MCz-p sensor didnt work for first annealing step MCz-n: no signal at T= -20°C Increasing fluence MCz-n T= -30°C

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Charge Collection overview Max: 24k Max: 22k Max: 15k/40k Max: 10k MCz-n T=-30°C No Signal at T=-20°C

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Signal to Noise P N 4. Lower limit, seed cut > 5 2. Same range FZ-n drops out 1. All quite good 3. p is better than n

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Charge multiplication Signal increases after Annealing of Signal to noise ratio doesnt decrease Large increase of leakage current

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Charge collection / multiplication Landau-Gauß-Fit broadens very much Peak is shifted to higher values Not a MIP signal any more usual distribution

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Charge collection / multiplication MPV cannot be determined very well MCz-n T=-30°C FZ-p + MCz-p T=-20°C

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Charge Collection / Signal to Noise Summary CC S/N T= -30°C MCz-n Charge multiplication 15d 337d

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Leakage Current Summary Charge multiplication 15d337d

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Neutron only / mixed irradiation Mixed irradiation F = 4.6*10 14 n eq /cm 2 F(p) = 0.8*10 14 n eq /cm 2 F(n) = 3.8*10 14 n eq /cm 2 Neutron only irradiation F(n) = 4.0*10 14 n eq /cm 2 1.Neutron only irradiation: FZ-n has smaller signal than MCz-n simulated by M. Huhtinen NIMA 491, , Mixed irradiation: No improvement in CC due to mixed irradiation G. Casse et al. Vertex2008:036, 2008 MCz FZ N-type

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Summary P-type materials showed higher charge collection and signal to noise FZ-p performance most interesting Charge multiplication only seen with FZ-p F > 1*10 15 n eq /cm 2, A > Manufacturer Micron Highest leakage current FZ-n showed largest dependence on annealing time Not usable at high fluences Charge collection of MCz materials does not anneal very much MCz-n is not working at T= -20°C at F=1.2*10 16 n eq /cm 2 Additional differences between n-type and p-type materials due to manufacturer? Compare to other studies: Charge multiplication study, HPK

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Thanks for your attention Diploma thesis of F. Petry (IEKP-KA/ ) Will be published soon: 27.pdf

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT BACKUP

19 th RD50 Workshop Robert Eber Institut für Experimentelle Kernphysik, KIT Prof. Max Mustermann - Title