Department of Chemistry, University of Wisconsin, Madison

Slides:



Advertisements
Similar presentations
Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
Advertisements

Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
Revisit vibrational Spectroscopy
65th OSU International Symposium on Molecular Spectroscopy RH14.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
High-Resolution Spectroscopy of the ν 8 Band of Methylene Bromide Using a Quantum Cascade Laser-Based Cavity Ringdown Spectrometer Jacob T. Stewart and.
1 Fourier transform microwave and infrared study of silacyclobutane Cody van Dijk, Samantha van Nest, Ziqiu Chen and Jennifer van Wijngaarden Department.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
20 June st International Symposium on Molecular SpectroscopyPetkie – TG03-p1 The Millimeter and Submillimeter-wave Spectrum of the , 6 1.
Friday, June 21, th OSU SYMPOSIUM MOLECULAR SPECTROSCOPY FB06: Cuisset & al Gas phase rovibrational spectroscopy of DMSO, Part II: « Towards a THz.
66th OSU International symposium on molecular spectroscopy
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Perturbations and vibrational energies in acrylonitrile from global analysis of its mm-wave to THz rotational spectrum Zbigniew Kisiel, a Lech Pszczółkowski,
June 21, 2012 Submillimeter Spectrum of Chloromethane: Analysis of the V 3 =1 Excited State Presented by: Alissa Fisher Auburn University and U.S. Army.
Atusko Maeda, Ivan Medvedev, Eric Herbst,
HIGH RESOLUTION LASER SPECTROSCOPY OF IRIDIUM MONOFLUORIDE AND IRIDIUM MONOCHLORIDE A.G. ADAM, L. E. DOWNIE, S. J. FORAN, A. D. GRANGER, D. FORTHOMME,
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
THz Spectroscopy of 1d-ethane: Assignment of v 18 ADAM M. DALY, BRIAN J. DROUIN, LINDA BROWN Jet Propulsion Laboratory, California Institute of Technology,
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
(Toho Univ. a, Univ. Toyama b ) Chiho Fujita a, Hiroyuki Ozeki a, and Kaori Kobayashi b 2015 Jun 22ndInternational Symposium on Molecular Spectroscopy,
Millimeter-wave Rotational Spectrum of Deuterated Nitric Acid Rebecca A.H. Butler, Camren Coplan, Department of Physics, Pittsburg State University Doug.
SESAPS Terahertz Rotational Spectrum of the v5/2v9 Dyad of Nitric Acid * Paul Helminger, a Douglas T. Petkie, b Ivan Medvedev, b and Frank C. De.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Microwave Spectroscopy of the Excited Vibrational States of Methanol John Pearson, Adam Daly, Jet Propulsion Laboratory, California Institute of Technology,
The Rotation-Vibration Structure of the SO 2 C̃ 1 B 2 State Derived from a New Internal Coordinate Force Field Jun Jiang, Barratt Park, and Robert Field.
RAMAN SPECTROSCOPY THREE EFFECTS OF RADIATION OF LIGHT ON MOLECULES CAN OCCUR. (i) RADIATION OF LIGHT ON TO MOLECULES, SOME OF THE LIGHT WILL BE REFLECTED.
Lineshape analysis of CH3F-(ortho-H2)n absorption spectra in 3000 cm-1 region in solid para-H2 Yuki Miyamoto Graduate School of Natural Science and Technology,
Max Planck Institute for the Structure and Dynamics of Matter
ASSIGNING OF VIBRATION-ROTATION SPECTRA USING THE LWW PROGRAM PACKAGE
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
Time-resolved infrared diode laser spectroscopy of the n1 band of CoNO
Jack C. Harms, Leah C. O’Brien,* and James J. O’Brien
High resolution far-IR spectroscopy of HFC-134a at cold temperatures
63rd OSU International Symposium on Molecular Spectroscopy FC01
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
The Near-IR Spectrum of CH3D
Jacob T. Stewart and Bradley M
Millimeter-wave spectroscopy of formyl azide (HC(O)N3)
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
The lowest vibrational states of urea from the rotational spectrum
Kaitlin Womack, Taylor Dahms, Leah O’Brien Department of Chemistry
Indirect Rotational Spectroscopy of HCO+
Department of Chemistry, University of Wisconsin, Madison
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Methylstyrenes – Microwave Spectroscopy
Vibrational energies for acrylonitrile from
Far Infrared Spectroscopy of Anti-Vinyl Alcohol
Millimeter-Wave Spectrum of Pyrimidine
Tie-Dyed McMahon Group Members
Millimeter-Wave Spectroscopy of Phenyl Isocyanate
62nd OSU International Symposium on Molecular Spectroscopy WG10
Strange combination band of the cross-shaped complex CO2 – CS2
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Analysis of torsional splitting in the ν8 band of propane near 870
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
ANH T. LE, GREGORY HALL, TREVOR SEARSa Department of Chemistry
Rigid Diatomic molecule
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Presentation transcript:

Department of Chemistry, University of Wisconsin, Madison Towards a Global Fit of the Combined Millimeter-wave and High Resolution FTIR Data for the Lowest Eight Vibrational States of Hydrazoic Acid (HN3) International Symposium of Molecular Spectroscopy, Urbana-Champaign, Illinois June 26, 2015 Brent K. Amberger, R. Claude Woods, Brian J. Esselman, Robert J. McMahon, Department of Chemistry, University of Wisconsin, Madison

Our Equilibrium Structure Determination of HN3 Observations between 235-450 GHz at room temperature -14 Isotopologues Studied -High level corrections for vibration-rotation interactions, xrefit in CFOUR used for structure determination (John Stanton)

Available HN3 Transitions in our Range 260-360 GHz a-type R branches b-type R and P branches

HN3 Ground R-Branch K=1 J= 13  12 K=1 Spectrum predicted from single state fit of K=0 through K=5 K=0 K=2 K=3 K=10 K=4 K=9 K=8 K=7 K=5 K=6 K=1 K=1 K=0 Actual Assignments K=2 Perturbed lines are often very perturbed K=3 The highly perturbed lines are also the lowest intensity lines K=10 K=4 K=8 K=7 K=5 K=9 K=6

Ground and Excited Vibrational State Transitions

Vibrational States and Perturbations 1266.6 cm-1 ν3 Fermi Resonance Gc (Coriolis) ~1213 cm-1 2ν6 1147.40 cm-1 ν4 Ga, Fa, Gb (Coriolis) ~1143.5 cm-1 ν5+ ν6 Ga, Fa, Gb (Coriolis) ~1074 cm-1 2ν5 Fermi Resonance Centrifugal Distortion (W05) Ga, Fa, Gb (Coriolis) 606.4 cm-1 ν6 Ga, Fa Gb (Coriolis) 537.3 cm-1 ν5 Centrifugal Distortion (W05) 0 cm-1 Ground

Extremely Useful Prior Infrared Studies Pure rotational ground state far IR Bendtsen, J.; Nicolaisen F. M. , Journal of Molecular Spectroscopy 1986, 119, 456-466. FTIR spectra and analysis of ν5, ν6 and ground state (i) Bendtsen, J.; Hegelund, F.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1986, 118, 121-131. (ii)Hegelund, F.; Bendtsen, J., Journal of Molecular Spectroscopy 1987, 124, 306-316. IR spectrum of ν4 Bendtsen, J.; Nicolaisen, F. M. Journal of Molecular Spectroscopy 1989, 133, 193-200. FTIR spectra and analysis of ν3 and ν4 Bendtsen, J.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1992, 152, 101-108 Tunable diode laser spectrum of ν3 Yamada, K. and Takami, M., Journal of Molecular Spectroscopy 1980 84, 431-446. BUT….

K Energies for the Vibrational States ν3 ν4 ground ν6 ν5

K Energies for the Vibrational States Estimated values for 2ν5, 2ν6 and ν5+ ν6 ν3 ν4 2ν6 ν5+ ν6 ground ν6 2ν5 ν5

Using IR data to Find Pure Rotational Transitions ν5 Finding HN3 v5 13 3 10 – 12 3 9 13 3 10 13 3 10 12 3 9 12 3 9 P- branch IR transitions R- branch IR transitions 14 3 11 13 3 10 12 3 9 11 3 8 Ground state 309933 MHz 309937 MHz

Linear Plots of Freq/Jup vs. Jup2 Steep negative slope Steep negative slope modest negative slope (most common) positive slope!

Examples of Perturbed K-States Steep negative slope (highly perturbed) These two mutually perturbing states are easily recognized as perturbed due to abnormal slopes for their K values. Positive slope (highly perturbed)

Intercepts of Linear Plots vs. K2

Previous slide average shifted by one in K The average is much smoother than either separately.

A 3-State Fit of Millimeter-wave Data: Ground, ν5, and ν6 Ground State A (MHz) 610740.770(86) B (MHz) 12034.570(35) C (MHz) 11781.109(35) ΔJ (kHz) 4.8886(25) ΔJK (kHz) 669.451(73) ΔK (kHz) -25131.(66) δJ (kHz) 0.09413(78) δK (kHz) 201.(17) ΦJ (Hz) -0.0017(19) ΦJK (Hz) -1.17(10) ΦKJ (Hz) 579.0(27) E (MHz) [0] N lines 132 σ (MHz) 0.36 ν5 (537.3 cm-1) A (MHz) 589939.(25) B (MHz) 12067.591(85) C (MHz) 11784.766(85) ΔJ (kHz) 4.7422(33) ΔJK (kHz) -958.92(43) ΔK (kHz) -84990.(690) δJ (kHz) -0.06842(86) δK (kHz) 416.(18) ΦJ (Hz) -0.1222(29) ΦJK (Hz) 35.04(27) ΦKJ (Hz) -27927.(11) E (MHz) [16106800] N lines 136 σ (MHz) 0.77 ν6 (606.4 cm-1) A (MHz) 622737.(25) B (MHz) 12034.340(90) C (MHz) 11802.444(90) ΔJ (kHz) 5.2144(52) ΔJK (kHz) 2686.51(43) ΔK (kHz) -872710.(1170) δJ (kHz) -0.1968(27) δK (kHz) 371.(20) ΦJ (Hz) -0.1446(59) ΦJK (Hz) -22.03(36) ΦKJ (Hz) 25958.(13) E (MHz) [18178100] N lines 82 σ (MHz) 1.05 Perturbation Terms Ga /MHz 1140200.(400) Fa /MHz 7.28(71) Gb /MHz 1912.1(13) W05 1034.4(43) Energies of states were fixed 11 parameters per state X 3 4 Perturbation terms 350 total transitions including a and b type…. σ = 0.73 MHz

The Higher Excited Vibrational States HN3 1266.6 cm-1 ν3 Fermi Resonance Gc (Coriolis) ~1213 cm-1 2ν6 1147.40 cm-1 ν4 Ga, Fa, Gb (Coriolis) ~1143.5 cm-1 ν5+ ν6 Ga, Fa, Gb (Coriolis) ~1074 cm-1 2ν5 Fermi Resonance Centrifugal Distortion (W05) Ga, Fa, Gb (Coriolis) Ga, Fa, Gb (Coriolis) 606.4 cm-1 ν6 537.3 cm-1 ν5 Centrifugal Distortion (W05) 0 cm-1 Ground

Infrared and Microwave Patterns are the Same for ν3 and ν4 Bendtsen, J.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1992, 152, 101-108 ΔB4 = (B+C)K of ν4 – (B+C)K of ground state ΔB3 = (B+C)K of ν3 – (B+C)K of ground state

Infrared – Microwave (B+C)K for ν3 and ν4

Adding ν3 and ν4 (with K shifted by 1) Bendtsen, J.; Nicolaisen, F. M., Journal of Molecular Spectroscopy 1992, 152, 101-108 Consistent with the ΔK = 1 selection rules for c-type Coriolis resonance (Gc)

b-type transitions for ν3 and ν4 14 1 14 - 15 0 15 15 1 15 - 16 0 16 16 1 16 - 17 0 17 17 1 17 - 18 0 18 18 1 18 - 19 0 19 24 1 24 - 25 0 25 25 1 25 - 26 0 26 26 1 26 - 27 0 27 27 1 27 - 28 0 28 28 1 28 --29 0 29 Perturbations bring a Q-branch series for ν3 into our range. b-type lines with J values ranging from 1 to 12.

Confident Assignment of the 2ν5 R-series Trendline on linear (less perturbed) region gives access to: Intercept = B+C Slope = -ΔJK

Next Steps Obtain solid assignments of a-type R-branches for ν5+ν6 and 2ν6. Find and assign b-type transitions for 2ν5, ν5+ν6, and 2ν6. Use linear least-squares plots to obtain as many initial values for as many parameters as possible. Obtain 5-state non-linear least-squares fit (SPFIT) for higher energy excited vibrational states. Determine the critical perturbation parameters for these higher states Ultimately obtain an 8-state global fit (“The Holy Grail”).

Thanks for Listening! The Research Group Professor Bob McMahon Professor Claude Woods Dr. Brian Esselman Brent Amberger Ben Haenni Zachary Heim Steph Knezz Matisha Kirkconnell Vanessa Orr Cara Schwarz Nick Walters Maria Zdanovskaia Advertisements Stay tuned for DN3 talk FE02 Brent Amberger also from our group: FE06 Nick Walters Millimeter- wave spectroscopy of formyl azide. Special thanks: John Stanton Mark Wendt