Full-field PIXE imaging

Slides:



Advertisements
Similar presentations
Topic 8. Gamma Camera (II)
Advertisements

Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Member of the Helmholtz Association High-Speed PIXE.
High-Speed PIXE A spatially resolved PIXE setup at the
Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
Ion beam Analysis Joele Mira from UWC and iThemba LABS Tinyiko Maluleke from US Supervisor: Dr. Alexander Kobzev Dr. Alexander Kobzev.
Image reconstruction and analysis for X-ray computed microtomography Lucia Mancini 1, Francesco Montanari 2, Diego Dreossi 3 1 Elettra - Trieste 2 A.R.P.A.
Random Telegraph Signal (RTS) in CMOS Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline Reminder: The operation principle of.
Alexander Klyachko, IU Cyclotron, PTCOG51, Seoul, South Korea, May 17-19, 2012 A.V. Klyachko 1, D.F. Nichiporov 1, L. Coutinho 2, C.-W. Cheng 2, 3, M.
ED and WD X-ray Analysis
Transmission Electron Microscopy (TEM) By Austin Avery.
VisiTech International’ VT-iSIM Imaging Beyond all Limits
High spatial resolution measurement of depth-of-interaction of a PET LSO crystal Aliz Simon a László Balkay b, István Chalupa b, Gábor Kalinka a, András.
Effective lens aperture Deff
Ion Beam Analysis Dolly Langa Physics Department, University of Pretoria, South Africa Blane Lomberg Physics Department, University of the Western Cape,
FRANK LABORATORY OF NEUTRON PHYSICS ION BEAM ANALYSIS STANCIU-OPREAN LIGIA SUPERVISOR DR. KOBZEV ALEXANDER.
SPiDeR  SPIDER DECAL SPIDER Digital calorimetry TPAC –Deep Pwell DECAL Future beam tests Wishlist J.J. Velthuis for the.
September 16, 2008LSST Camera F2F1 Camera Calibration Optical Configurations and Calculations Keith Bechtol Andy Scacco Allesandro Sonnenfeld.
Munich-Centre for Advanced Photonics A pixel detector system for laser-accelerated ion detection Sabine Reinhardt Fakultät für Physik, Ludwig-Maximilians-Universität.
DynAMITe: a Wafer Scale Sensor for Biomedical Applications M. Esposito 1, T. Anaxagoras 2, A. Fant 2, K. Wells 1, A. Kostantinidis 3, J. Osmond 4, P. Evans.
Francis H. Burr Proton Therapy Center Massachusetts General Hospital December 2005 CRONUS Annual Meeting Irradiations at LANSCE May 2 – Flight.
Multi-colour sctintillator-based ion beam profiler James Green, Oliver Ettlinger, David Neely (CLF / STFC) 2 nd Ion diagnostic workshop June 7-8 th.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
8 th World Conference on Neutron Radiography  Gaithersburg, MD USA  October Imaging of Neutron Fields with Submicron Resolution R. Gregory Downing.
PSF in-flight calibration - PN IFC/CNRRingberg, April 2-4, 2002 PSF in-flight calibration for PN camera Simona Ghizzardi Silvano Molendi.
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
Goddard February 2003 R.Bellazzini - INFN Pisa A new X-Ray Polarimeter based on the photoelectric effect for Black Holes and Neutron Stars Astrophysics.
Neutron production in Pb/U assembly irradiated by deuterons at 1.6 and 2.52 GeV Ondřej Svoboda Nuclear Physics Institute, Academy of Sciences of Czech.
Questions/Problems on SEM microcharacterization Explain why Field Emission Gun (FEG) SEM is preferred in SEM? How is a contrast generated in an SEM? What.
METAL DETECTORS: PERFORMANCES AND APPLICATIONS Oleksandr Okhrimenko Institute for Nuclear Research NAS of Ukraine, Kiev.
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
PSA: ADAPTIVE GRID SEARCH The Method Experimental Results Optimization aspects Roberto Venturelli (INFN Padova - IPSIA “Giorgi” Verona) SACLAY, 05-may-06.
Initial Results from the Scintillator Fast Lost Ion Probe D. Darrow NSTX Physics Meeting February 28, 2005.
Acquisition time6 min1 min 12 s Collimator height25 mm (Anger)12 mm (HiSens) Detector1 layer, 1 pixel / hole3 layers, 1 pixel / hole3 layers, 4 pixels.
Equalization of Medipix2 imaging detector energy thresholds using measurement of polychromatic X-ray beam attenuation Josef Uher a,b, Jan Jakubek c a CSIRO.
Neutron production and iodide transmutation studies using intensive beam of Dubna Phasotron Mitja Majerle Nuclear Physics Institute of CAS Řež, Czech republic.
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
E-TCT measurements with laser beam directed parallel to strips Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Mikuž 1,2,
Semiconductor Detectors and Applications on X-ray imaging Natalie Diekmann Particle Physics 1 NIKHEF.
N.Kimmel, the MPI Halbleiterlabor team and PNSensor References: H. Tsunemi et al., NIM A 421 (1999), H. Tsunemi et al., NIM A 436 (1999), Characterization.
Energy-Filtered Transmission Electron Microscope (EFTEM)
IPHC, Strasbourg / GSI, Darmstadt
Fastest Data Processing in Image Reconstruction for Compton Camera Imaging
V. Agapov, N. Sakva, D.Davydov, E.Katkova
Guojian Wang University of South Dakota
WRM for Neutrinos - INTRODUCTION Dorota Stefan and Robert Sulej
Extended Depth of Field For Long Distance Biometrics
A 3D design model of the apparatus for the Laser Wakefield Acceleration of electrons at ELI-NP S. Balascuta1 , R. Dinca1 1) “Horia Hulubei” National.
Development of the Soft X-ray Large solid angle Camera onboard WF-MAXI
PIXE measurements of heavy metals of Tsunami sediment samples
l 66TH MEETING OF THE ESRF l May 2014 l Author
Tango Integration of Modern 2D Detectors
Laboratory equipment Lecture (3).
Analysis of optical IPM data
Single Object & Time Series Spectroscopy with JWST NIRCam
Development of a Compton Camera for online range monitoring
the s process: messages from stellar He burning
What is XPS? XPS (x-ray photoelectron spectroscopy) is also known as ESCA (electron spectroscopy for chemical analysis). XPS provides chemical information.
Exploring the limits of hybrid pixel detectors with MÖNCH
Development and characterization of the Detectorized Phantom for research in the field of spatial fractionated radiation therapy. D. Ramazanov, V. Pugatch,
SIGMA: a detector for γ-ray spectroscopy & imaging Dr Laura AGATA/GRETINA Collaboration Meeting
Extending IBA Analysis:
Announcements Midterm out today Project 1 demos.
EPIC Calibration & Operations Meeting
ION BEAM ANALYSIS.
The LEO axis motorisation as standard
Distributed Ray Tracing
Operational Results of LHC Collimator Alignment using Machine Learning
Some Thoughts on the JLEIC Ion Injector
Operational Results of LHC Collimator Alignment using Machine Learning
Presentation transcript:

Full-field PIXE imaging 15.06.2018 14:40 Full-field PIXE imaging Multi-frame super-resolution to overcome optics pattern and imaging-based resolution limitations Josef Buchriegler N. Klingner, D. Hanf, F. Munnik, S.H. Nowak, J. von Borany, R. Ziegenrücker 15th International Conference on PIXE 2nd – 7th April 2017, Split, Croatia

Imaging enhancements: Outline 15.06.2018 14:40 Full-field PIXE @ HZDR Imaging challenges: optics’ pattern & unevenness pixel resolution Imaging enhancements: Image stacking Super resolution Sub-pixel correction Bright-field correction Examples Summary & Outlook

Motivation → classical µ-beam PIXE set-up: scanning point by point 15.06.2018 14:40 → classical µ-beam PIXE set-up: scanning point by point object 50x50 μm2 aperture 1x1 mm2 lens sample surface MeV proton beam (3 µA) proton current on sample: 0.5 nA detector elemental distribution has to be mapped offline → full-field approach: simultaneous detection of a large area (full-field) MeV proton beam (<1 µA) sample surface X-ray guidance elemental mapping in real-time pixel detector screening of large samples for resource technology mapping of minor and trace elemental distributions

Full-field detector Specifications: 12 cm number of pixel Name Value number of pixel 264 × 264 = 69 696 pixels size 48 × 48 µm² imaging area 12 × 12 mm² frame rate 200 - 1000 Hz sensitive energy range 2 – 20 keV active sensor thickness 450 µm energy resolution 152 keV @ Mn Kα quantum efficiency >95% @ 3-10 keV >30% @ 20 keV X-ray optics parallel (78 mm, 1:1) conical (82 mm, 6:1)

Full-field PIXE imaging @ HZDR Super-SIMS Sources AMS sources 6 MV Tandem- accelerator PIXE cam 10 m 2 – 4 MeV protons up to 1 µA current ~90 m beam path from ion source to sample surface Proton beam Poly-capillary optics Color X-ray camera Samples 3-axis stage D. Hanf et al. 2016, NIM B 377, 17-24, DOI: 10.1016/j.nimb.2016.03.032

Imaging challenges Imaging principle – poly-capillary optics (1:1) 1.0 mm Sample pnCCD-chip Proton beam capillaries (20 µm diameter)

Imaging challenges Poly-capillary optics – transmission properties [× median] Eventmap of Cu-plate: measurement time: 60 min ~220 nA total current 6 GB data (EVT-format) 35 x 106 events in total 550 evts/px (median) hexagonal pattern radial unevenness [× median]

position information is thrown away Imaging challenges Charge collection – pixel resolution X-ray photon electron cloud pixel shift register photon can affect up to 4 pixels larger/implausible pattern are discarded ■ electron cloud ■ considered charge ■ involved pixels × assigned pixel position information is thrown away O. Scharf et al. 2011, Anal. Chem. 83, 2532-2538, DOI: 10.1021/ac102811p

lateral resolution: (76±23) µm Imaging challenges Limits of pixel resolution Cr pattern on Si 170x170 µm² 1x1 mm² lateral resolution: (76±23) µm

Imaging enhancements A) ImageStacking original image single image optics pattern

Imaging enhancements A) ImageStacking image 2 image 1 + 2 image 1 single image image 1 + 2 + 3

Imaging enhancements A) ImageStacking first image original image sum of 2 images sum of 10 images sum of 9 images sum of 8 images sum of 7 images sum of 6 images sum of 5 images sum of 3 images influence of pattern is “diluted” features are added up same total measurement time sum of 4 images caution: Moiré-pattern possible

Imaging enhancements B) SuperResolution 15.06.2018 14:40 B) SuperResolution original image series of LR-images shifted in sub-pixel-range 6x6 pixel (LR) stack of 9 images sub-pixel information emerges due to “lateral oversampling” intrinsic feature of image stacking stack of 9 up-scaled images 18x18 pixel (3x up-scaled) stack of 5 up-scaled images

Imaging enhancements C) Sub-pixel Correction detection: stored data: sub-pixel algorithm: electron cloud charge distribution centre of gravity assign sub-pixel(s) energy information of each X-ray is relocated to smaller region S.H. Nowak et al. 2015, JAAS 30, 1831-2026, DOI: 10.1039/c5ja00028a

Imaging enhancements D) Bright-field Correction 1300 1.4 1.0

 () Imaging enhancements Overview A) ImageStacking lateral resolution hexagonal pattern radial unevenness A) ImageStacking  () B) SuperResolution C) Sub-pixel correction D) Bright-field correction

Experimental implementation Generate list of random positions (x/y-shifts) Measurement: “take an image” on each position  real positions are logged by independent position sensor (accuracy better than 1 µm)  charge distribution of each photon stored into ASCII-file Parse & merge ASCII-files while applying: shift-correction for each position  ImageStacking (A) + SuperResolution (B) remap charge-/energy-distribution on sub-pixel matrix  Sub-pixel Correction (C) filter for energies/peaks of interest to map elemental distributions (ROIs) Correct ROI-maps with bright-field measurement  Bright-field Correction (D)

Examples Cu-stripes 3 mm 3 mm Standard image (52 Min @ ~450 nA) Stack of 26 images – without SPC/BFC! (26x 2 Min @ ~450 nA)

Examples 1 2 Siemens-star 1 2 3 4 3 4 set of 22 images, Ni-Ka map 1 mm 2 Siemens-star set of 22 images, Ni-Ka map 1 2 3 4 Standard image: up-scaled similar statistics 22 shots: incl. ImageStacking incl. SuperResolution 22 shots: incl. ImageStacking incl. SuperResolution incl. Sub-pixel correction 22 shots: incl. ImageStacking incl. SuperResolution incl. Sub-pixel correction incl. Bright-field correction 3 4

Examples Geological sample: Ag-mineral K-Kα Fe-Kα Pb-Kβ Standard image: 52 minutes (pixel size: 48 µm) Fully corrected image: 26x 2 minutes (4x SR/SPC  sub-pixel size: 12 µm) K-Kα Fe-Kα Pb-Kβ

Summary & Outlook Summary Outlook full-field PIXE set-up at HZDR 15.06.2018 14:40 Summary full-field PIXE set-up at HZDR challenges provoked by this new approach strategies to overcome such difficulties promising examples Outlook automation of shift-mode measurements measurements with more images to asses limits implementation of routines into online-evaluation software  high-resolution imaging in real-time

Thank you for your attention ! Acknowledgements 15.06.2018 14:40 Helmholtz-Zentrum Dresden-Rossendorf, IBC Shavkat Akhmadaliev Jörg Grenzer Daniel Hanf René Heller Nico Klingner Holger Lange Frans Munnik Johannes von Borany Helmholtz-Zentrum Dresden-Rossendorf, HIF Sandra Dreßler Silke Merchel Axel D. Renno René Ziegenrücker Jožef Stefan Institute, Ljubljana, Slovenia Marko Petric Companies Oliver Scharf (IFG Institute for Scientific Instruments, Berlin) David Kalok (pnSensor, Munich) beyond Europe Stanisław H. Nowak (Stanford University, USA) Wojciech Przybyłowicz (iThemba Labs, South Africa) Chris Ryan (CSIRO, Australia) Thank you for your attention ! This work was supported by Marie Curie Actions - Initial Training Networks (ITN) as an Integrating Activity Supporting Postgraduate Research with Internships in Industry and Training Excellence (SPRITE) under EC contract no. 317169.