IT Phsae transformation of metals

Slides:



Advertisements
Similar presentations
Heat Treatment of Steels
Advertisements

Non Equilibrium Heat Treatment of Steels.
Heat treatment 1. Introduction
UNIT 3: Metal Alloys Unit 3 Copyright © 2012 MDIS. All rights reserved. 1 Manufacturing Engineering.
Module 5. Metallic Materials
Chapter 11: Phase Transformations
1 Kinetics – time dependence of transformation rate.
Incubation Temp.( 0 C) Time at which Transformation Starts/Begins Ends 700S1E1 650S2E2 600S3E3 550S4E4 500S5E5 450S6E6 400S7E7 350S8E SE SnEn -----SrEr.
Phase Transformations
ISSUES TO ADDRESS... Transforming one phase into another takes time. How does the rate of transformation depend on time and T? 1 How can we slow down the.
Phase transformations Fe 3 C (cementite) L  (austenite)  +L+L  + Fe 3 C  L+Fe 3 C  C o, wt% C 1148°C T(°C)
ISSUES TO ADDRESS... • Transforming one phase into another takes time.
CARBON STEEL Microstructure & Mechanical properties
Chapter 10: Phase transformations in metals   Simple diffusion-dependent No change in either the number or composition of phases present, e.g., solidification.
Chapter 10: Phase Transformations – adding Time to Phase Diagrams
IRON IRON-CARBON DIAGRAM
Metal Alloys: Their Structure & Strengthening by Heat Treatment
How to calculate the total amount of  phase (both eutectic and primary)? Fraction of  phase determined by application of the lever rule across the entire.
Chapter 10: Phase Transformations
Chapter 10 Phase Transformations. Kinetics and Phase Transformations Phase diagrams show which phases are in equilibrium under certain conditions, such.
Chapter 10- ISSUES TO ADDRESS... Transforming one phase into another takes time. How does the rate of transformation depend on time and T? 1 How can we.
Isothermal Transformation Diagrams
ENGR-45_Lec-23_Metal_Phase_Xforms-1.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical.
Chapter 10 Phase Transformations in Metals (2)
Metallurgy of steel When carbon in small quantities is added to iron, ‘Steel’ is obtained. The influence of carbon on mechanical properties of iron is.
Dr. Eng. Hamed A. Nagy HAZ and Heat Input. Dr. Eng. Hamed A. Nagy Basic Metal Structures I. Pure Metal II. Substitutional Atom III. Interstitial Atom.
CHAPTER 11: PHASE TRANSFORMATIONS
Materials Engineering – Day 13 More About Steel
ISSUES TO ADDRESS... Transforming one phase into another takes time. How does the rate of transformation depend on time and T? 1 How can we slow down the.
Phase Transformations in Metals
Chapter Lecture 11 Phase Diagrams, Solidification, Phase transformations ME 330 Engineering Materials Solidification Solidification microstructures.
An Introduction to Ferrous Metallurgy TSM 233 Unit 13.
 Austenite - The name given to the FCC crystal structure of iron.  Ferrite - The name given to the BCC crystal structure of iron that can occur.
Fe-Carbon Phase Diagram
Phase Diagram Fe3C.
Chapter 10: Phase Transformations
Non-Equilibrium Heat Treatment. Steel Crystal Structures: Ferrite – BCC iron w/ carbon in solid solution (soft, ductile, magnetic) Austenite – FCC iron.
Group 3 Steels: Eutectoid Composition Steels Steels with carbon contents just below the eutectoid to the eutectoid composition (0.6 – 0.8 C) are used.
Fe-Carbon Diagram, TTT Diagram & Heat Treatment Processes
CHAPTER 10: PHASE TRANSFORMATIONS
Chapter 10: Phase Transformations
Chapter 11: Phase Transformations
Chapter 10: Phase Transformations
Vadodara Institute of Engineering
Materials Engineering
The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram
Hardness • Resistance to permanently indenting the surface.
Phase Transformations
Chapter 10: Phase Transformations
Chapter 10: Phase Transformations
EX 1: Pb-Sn Eutectic System
Chapter 9: Phase Diagrams
Chapter 11: Phase Diagrams
Isothermal Transformation (or TTT) Diagrams
Chapter 11: Metal Alloys Heat Treatment
© 2016 Cengage Learning Engineering. All Rights Reserved.
AHMEDABAD INSTITUTE OF TECHNOLOGY
PHASE TRANSFORMATIONS
CHAPTER 11: PHASE TRANSFORMATIONS
Which of the following is a single phase that can occur in steels:
Introduction to Materials Science and Engineering
CHAPTER 10: PHASE TRANSFORMATIONS
Group 3 Steels: Eutectoid Composition Steels
Heat Treatment of Metals
Group 2 Steels: Medium Carbon Alloy Steels (0.25 – 0.55 %C)
NON-EQUIL TRANSFORMATION PRODUCTS: Fe-C
Non Equilibrium Heat Treatment of Steels.
Hypoeutectoid Steel T(°C) d L +L g (austenite) Fe3C (cementite) a
Heat Treatment of Metals
Presentation transcript:

IT Phsae transformation of metals

Rate of Phase Transformation Fixed T: Isothermal Completely growth maximum rate reached – now amount unconverted decreases so rate slower Fraction transformed, y rate increases as surface area increases & nuclei grow S.A. = surface area log t By convention r = 1 / t0.5

Isothermal transformation diagrams • Fe-C system, Co = 0.76 wt% C • Transformation at T = 675°C. 675°C (DT smaller) 50 y (% pearlite) 600°C (DT larger) 650°C 100 100 T = 675°C y, % transformed 50 2 4 1 10 10 time (s) 400 500 600 700 1 10 2 3 4 5 0%pearlite 100% 50% Austenite (stable) TE (727C) Austenite (unstable) Pearlite T(°C) time (s) isothermal transformation at 675°C Course pearlite  formed at higher T - softer Fine pearlite  formed at lower T - harder

Rate of Phase Transformations 135C 119C 113C 102C 88C 43C 1 10 102 104 % Recrystallization of Rolled Copper Percent recrystallization is function of time and temperature

Transformations & Undercooling • Eutectoid transformation (Fe-C System): g Þ a + Fe3C 0.76 wt% C 0.022 wt% C 6.7 wt% C • Can make it occur at: ...727ºC (cool it slowly) ...below 727ºC (“undercool” it!) Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L +Fe3C a L+Fe3C d (Fe) Co , wt%C 1148°C T(°C) ferrite 727°C Eutectoid: Equil. Cooling: Ttransf. = 727ºC DT Undercooling by DTtransf. < 727C 0.76 0.022

Eutectoid Transformation Rate • Growth of pearlite from austenite: cementite (Fe3C) Ferrite (a) g a pearlite growth direction Diffusive flow of C needed a g g a a • Higher T give higher diffusivity

Effect of Cooling History in Fe-C System • Eutectoid composition, Co = 0.76 wt% C • Begin at T > 727°C • Rapidly cool to 625°C and hold isothermally. 400 500 600 700 0%pearlite 100% 50% Austenite (stable) TE (727C) Austenite (unstable) Pearlite T(°C) 1 10 2 3 4 5 time (s) g g

Transformations with Proeutectoid Materials CO = 1.13 wt% C TE (727°C) T(°C) time (s) A + C P 1 10 102 103 104 500 700 900 600 800 Fe3C (cementite) 1600 1400 1200 1000 800 600 400 1 2 3 4 5 6 6.7 L g (austenite) +L +Fe3C a L+Fe3C d (Fe) Co , wt%C T(°C) 727°C DT 0.76 0.022 1.13 Hypereutectoid composition – proeutectoid cementite

T-T-T of Eutectoid Composition A – Austenite P – Pearlite B – Bainite M – Martensite C – Cementite

Non-Equilibrium Transformation Products: Fe-C • Bainite: --a lathes (strips) with long rods of Fe3C --diffusion controlled. • Isothermal Transf. Diagram Fe3C (cementite) 10 3 5 time (s) -1 400 600 800 T(°C) Austenite (stable) 200 P B TE 0% 100% 50% pearlite/bainite boundary A a (ferrite) 100% pearlite 100% bainite 5 mm T-T-T Diagram Time – Temperature – Transformation

Spheroidite: Fe-C System -- a grains with spherical Fe3C -- diffusion dependent. -- heat bainite or pearlite for long times near TE 60 m a (ferrite) (cementite) Fe3C

Martensite: Fe-C System --g(FCC) to Martensite (BCT) Martensite needles Austenite 60 m x potential C atom sites Fe atom sites • Isothermal Transf. Diagram 10 3 5 time (s) -1 400 600 800 T(°C) Austenite (stable) 200 P B TE 0% 100% 50% A M + A 90% • g to M transformation -- is rapid! -- % transformation depends on T only.

Martensite Formation  (FCC) P  (BCC) + Fe3C tempering slow cooling quench M (BCT) tempering M = martensite is body centered tetragonal (BCT) Diffusionless transformation BCT if C > 0.15 wt% BCT  few slip planes  hard, brittle

Phase Transformations of Alloys Effect of adding other elements Change transition temp. Cr, Ni, Mo, Si, Mn retard    +Fe3C transformation Alloy steel (type 4340)

Continuous Cooling Curve Actual processes involves cooling – not isothermal Can’t cool at infinite speed

Dynamic Phase Transformations On the isothermal transformation diagram for 0.45 wt% C Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures: 42% proeutectoid ferrite and 58% coarse pearlite 50% fine pearlite and 50% bainite 100% martensite

Example Problem for Co = 0.45 wt% 42% proeutectoid ferrite and 58% coarse pearlite first make ferrite then pearlite course pearlite  higher T A + B A + P A + a A B P 50% 200 400 600 800 0.1 10 103 105 time (s) M (start) M (50%) M (90%) T (°C)

Example Problem for Co = 0.45 wt% 50% fine pearlite and 50% bainite first make pearlite then bainite fine pearlite  lower T A + B A + P A + a A B P 50% 200 400 600 800 0.1 10 103 105 time (s) M (start) M (50%) M (90%) T (°C)

Example Problem for Co = 0.45 wt% 100 % martensite – quench = rapid cool A + B A + P A + a A B P 50% 200 400 600 800 0.1 10 103 105 time (s) M (start) M (50%) M (90%) c) T (°C)

Mechanical Prop: Fe-C System (1) • Effect of wt% C Co < 0.76 wt% C Hypoeutectoid Pearlite (med) ferrite (soft) Co > 0.76 wt% C Hypereutectoid Pearlite (med) C ementite (hard) 300 500 700 900 1100 YS(MPa) TS(MPa) wt% C 0.5 1 hardness 0.76 Hypo Hyper wt% C 0.5 1 50 100 %EL Impact energy (Izod, ft-lb) 40 80 0.76 Hypo Hyper • More wt% C: TS and YS increase , %EL decreases.

Mechanical Prop: Fe-C System (2) • Fine vs coarse pearlite vs spheroidite 80 160 240 320 wt%C 0.5 1 Brinell hardness fine pearlite coarse spheroidite Hypo Hyper 30 60 90 wt%C Ductility (%RA) fine pearlite coarse spheroidite Hypo Hyper 0.5 1 • Hardness: fine > coarse > spheroidite fine < coarse < spheroidite • %RA:

Mechanical Prop: Fe-C System (3) • Fine Pearlite vs Martensite: 200 wt% C 0.5 1 400 600 Brinell hardness martensite fine pearlite Hypo Hyper • Hardness: Fine Pearlite << Martensite. • Hardness: Pearlite < Bainite.

Tempering Martensite • reduces brittleness of martensite, • reduces internal stress caused by quenching. YS(MPa) TS(MPa) 800 1000 1200 1400 1600 1800 30 40 50 60 200 400 600 Tempering T (°C) %RA TS YS 9 mm produces extremely small Fe3C particles surrounded by a. • • decreases TS, YS but increases %RA

Summary: Processing Options Austenite (g) Bainite (a + Fe3C plates/needles) Pearlite (a + Fe3C layers + a proeutectoid phase) Martensite (BCT phase diffusionless transformation) Tempered (a + very fine Fe3C particles) slow cool moderate rapid quench reheat Strength Ductility T Martensite bainite fine pearlite coarse pearlite spheroidite General Trends