Magnet Slowcontrol Overview Mu3e DAQ system Integration of magnet into DAQ system Interfaces
Traditional Slow Control HV Temperature, pressure, … Valves 12345 Terminal Server PLC RS232 GPIB PC ??? 15° C Ethernet heater MIDAS DAQ 12:30 12.3 12:45 17.2 13:20 15.2 14:10 17.3 15:20 16.2 18:30 21.3 19:20 18.2 19:45 19.2
Single Slow Control System HV Temperature, pressure, … Valves Single System to control all! heater MIDAS DAQ
SCS-2000 64 IOs CPLD uC board
SCS-2000 IO Cards EEPROM Experimental Board Debug Board 3.3V/5V 8 In/Out 24V 2A 8 Out 4 Relais 0-20mA 8 Out -10…+10V 8 Out -10…+10V 0..2.5V 0..20mA 8x24bit In 0…10nF 0…1uF 4 In Opt.-Coupler 4 Out
Interface nodes Some experiment hardware has own controllers → need interfaces Parallel (Centronics), RS-232 and GPIB adapter Work either string oriented or with local protocol handlers
Optical Link Optical transceiver for >5kV insulation, necessary for electrostatic separator (200kV) 1 2 3 4 5 6 7 8 start stop enable RS- 485 enable NE555
MIDAS integration Hardware Hardware Hardware Interface Interface MIDAS Online Database Alarm System History Web server
MIDAS Custom Pages & History MIDAS “custom” page for MEG beam line magnet MEG gas system
Analog interface Magnet Power Supply Control Box 0-10 V 4-20 mA 24 V Danfysik PSI Control Box
Magnet Control Standalone (non-PC) control of superconducting magnet
Digital interface Magnet Power Supply Control Box Interface 0-10 V Danfysik RS232 PSI “setcurrent 100A” “readcurrent” Interface
Web interface Magnet Power Supply Control Box Web server 0-10 V Danfysik PSI http://mu3e.psi.ch?cmd=set¤t=100A
Conclusion The experiment needs central control & monitoring of magnet Different interfaces and strategies possible Choose method which is best for both sides