Neutral beam heating on the TCV tokamak

Slides:



Advertisements
Similar presentations
H-mode characterization for dominant ECR heating and comparison to dominant NBI or ICR heating F. Sommer PhD thesis advisor: Dr. Jörg Stober Academic advisor:
Advertisements

The Swiss Association vision for the period Presented by M. Q. Tran on behalf of the CRPP.
Introduction to Spherical Tokamak
Progress of Alfven wave experiment in SUNIST The 2 nd A3 Foresight Workshop on Spherical Torus, January, 2014, Beijing, China Y. Tan 1*, Z. Gao 1,
A.Karpushov, Mission 410, Jaunt 414,  p "H-gas puff experiments on TCV" Réunions scientifiques, 22 novembre 2004  p 414-1: “H-gas puff experiments.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U N. Oyama 1), Y. Sakamoto 1), M. Takechi 1), A. Isayama.
IAEA 2004 ICRH Experiments on the Spherical Tokamak Globus-M V.K.Gusev 1, F.V.Chernyshev 1, V.V.Dyachenko 1, Yu.V.Petrov 1, N.V.Sakharov 1, O.N.Shcherbinin.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Effect of non-Maxwellian Velocity Distributions of EC Heated Plasmas on Electron Temperature Measurements by Thomson Scattering Ge Zhuang 1,2 1. College.
1 ST workshop 2005 Numerical modeling and experimental study of ICR heating in the spherical tokamak Globus-M O.N.Shcherbinin, F.V.Chernyshev, V.V.Dyachenko,
H. Urano, H. Takenaga, T. Fujita, Y. Kamada, K. Kamiya, Y. Koide, N. Oyama, M. Yoshida and the JT-60 Team Japan Atomic Energy Agency JT-60U Tokamak: p.
10th ITPA TP Meeting - 24 April A. Scarabosio 1 Spontaneous stationary toroidal rotation in the TCV tokamak A. Scarabosio, A. Bortolon, B. P. Duval,
1 Association Euratom-Cea TORE SUPRA Tore Supra “Fast Particles” Experiments LH SOL Generated Fast Particles Meeting Association Euratom IPP.CR, Prague.
Profile Measurement of HSX Plasma Using Thomson Scattering K. Zhai, F.S.B. Anderson, J. Canik, K. Likin, K. J. Willis, D.T. Anderson, HSX Plasma Laboratory,
Ursel Fantz for the IPP-NNBI Team 16 th ICIS, New York City, USAAugust 23-28, 2015 Towards 20 A Negative Hydrogen Ion Beams for Up to 1 hour: Achievements.
H-mode characteristics close to L-H threshold power ITPA T&C and Pedestal meeting, October 09, Princeton Yves Martin 1, M.Greenwald, A.Hubbard, J.Hughes,
1 CHI Summary Transient CHI (XP606) –All systems operated reliably without any faults Edge Current drive (XP533)
O. Sauter Effects of plasma shaping on MHD and electron heat conductivity; impact on alpha electron heating O. Sauter for the TCV team Ecole Polytechnique.
Overview of the KSTAR commissioning M. Kwon 3 June, 2008.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
Current Drive for FIRE AT-Mode T.K. Mau University of California, San Diego Workshop on Physics Issues for FIRE May 1-3, 2000 Princeton Plasma Physics.
1 Instabilities in the Long Pulse Discharges on the HT-7 X.Gao and HT-7 Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei,
Recent Results of KSTAR
1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.
ASIPP Long pulse and high power LHCD plasmas on HT-7 Xu Qiang.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Use of the focusing multi-slit ion optical system at the diagnostic injector RUDI A.Listopad 1, J.Coenen 2, V.Davydenko 1, A.Ivanov 1, V.Mishagin 1, V.Savkin.
MAST V.Shevchenko et al, ISTW 2006, October 2006, Chengdu, China EBW Experiments on MAST V. Shevchenko 1, G. Cunningham 1, A. Gurchenko 2, E. Gusakov.
Large Diagnostic Neutral Beam Injectors of Budker Institute of Nuclear Physics Budker Institute of Nuclear Physics, , Novosibirsk, Russia V.Davydenko.
Probe measurements on the GOLEM tokamak Vojtech Svoboda 1, Miglena Dimitrova 2, Jan Stockel 1,2 1 Faculty of Nuclear Physics and Physical Engineering,
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
Measurements of plasma turbulence by laser scattering in the Wendelstein 7-AS stellarator Nils P. Basse 1,2, S. Zoletnik, M. Saffman, P. K. Michelsen and.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
HL-2A Heating & Current Driving by LHW and ECW study on HL-2A Bai Xingyu, HL-2A heating team.
The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M.
Effect of Helical Magnetic Field Ripples on Energetic Particle Confinement in LHD Plasmas T.Saida, M.Sasao, M.Isobe 1, M.Nishiura 1, S.Murakami 2, K.Matsuoka.
NCSX NCSX CDR May 21-23, 2002 H.W. Kugel Slide 1 Conceptual Design for NCSX Auxiliary Systems Heating, Fueling,Wall Conditioning and Vacuum Systems.
GOLEM operation based on some results from CASTOR
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
Charge Exchange Spectroscopic Diagnostic for the TJ-II José Miguel Carmona Torres Laboratorio Nacional de Fusion EURATOM-CIEMAT.
LI et al. 1 G.Q. Li 1, X.Z. Gong 1, A.M. Garofalo 2, L.L. Lao 2, O. Meneghini 2, P.B. Snyder 2, Q.L. Ren 1, S.Y. Ding 1, W.F. Guo 1, J.P. Qian 1, B.N.
Merging/compression plasma formation in Spherical Tokamaks
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
Lower Hybrid Wave Coupling and Current Drive Experiments in HT-7 Tokamak Weici Shen Jiafang Shan Handong Xu Min Jiang HT-7 Team Institute of Plasma Physics,
Long Pulse High Performance Plasma Scenario Development for NSTX C. Kessel and S. Kaye - providing TRANSP runs of specific discharges S.
1 Young-Ju Lee Vacuum & Cryogenic Engineering Team National Fusion Research Institute Young-Ju Lee Vacuum & Cryogenic Engineering Team National Fusion.
Managed by UT-Battelle for the Department of Energy The Use of a 28 GHz Gyrotron for EBW Startup Experiments on MAST John Caughman,Tim Bigelow, Steffi.
JongGab Jo, H. Y. Lee, Y. H. An, K. J. Chung and Y. S. Hwang*
Turbulence wave number spectra reconstruction
MARTe real-time acquisition system of a Two-Color Interferometer for
International Youth Conference on Fusion Energy Conference
Construction and Status of Versatile Experiment Spherical Torus at SNU
The 15th International Conference on Ion Sources (ICIS’13)
11th IAEA Technical Meeting on H-mode Physics and Transport Barriers" , September, 2007 Tsukuba International Congress Center "EPOCHAL Tsukuba",
S. Coda for the TCV team and the EUROfusion MST1 team
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
M4 m4 WHAT IS A TOKAMAK? Graphic: EUROfusion, Reinald Fenke, CC BY 4.0,
Status of Equatorial CXRS System Development
The Gas Dynamic Trap (GDT) Neutron Source
TC-2 – Power ratio April 2011, San Diego
ITER ICRF Scenario Demonstration in Hydrogen with 3He Minority Heating
Plasma shape and fueling dependence on small ELM regimes in TCV and AUG B. Labit1 T. Eich2 G. Harrer3, M. Bernert2, H. De Oliveira1, M. Dunne2, L. Frassinetti4,
Ioffe Institute, St. Petersburg, Russian Federation
TCV Heating and In-vessel Upgrades for Addressing DEMO Physics Issues
• First deuterium beam operation was initiated in LHD-NBI in
OV/P-1 S. Coda for the TCV Team and the EUROfusion MST1 team1
The GDT device at the Budker Institute of Nuclear Physics is an experimental facility for studies on the main issues of development of fusion systems based.
Ioffe Summary Fast MHD oscillations observed on the TUMAN-3M in absence of energetic ions Bursts of the oscillations correlate with saw-tooth crashes and.
Presentation transcript:

Neutral beam heating on the TCV tokamak 29th Symposium on Fusion Technology, 5 - 9 September 2016, Prague, Czech Republic Neutral beam heating on the TCV tokamak Alexander N. Karpushova, René Chavana, Stefano Codaa, Vladimir I. Davydenkob, Frédéric Dolizya, Aleksandr N. Dranitchnikovb, Basil P. Duvala, Alexander A. Ivanovb, Damien Fasela, Ambrogio Fasolia, Vyacheslav V. Kolmogorovb, Pierre Lavanchya, Xavier Llobeta, Blaise Marletaza, Philippe Marmilloda, Yves Martina, Antoine Merlea, Albert Pereza, Olivier Sautera, Ugo Siravoa, Igor V. Shikhovtsevb, Aleksey V. Sorokinb, Matthieu Toussainta a Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC),CH-1015 Lausanne, Switzerland b Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia Introduction I. Neutral Beam Injector TCV tokamak: RO0.88m, a0.25m, BT1.54T, IP1MA, in operation since 1992 before 2016: 0.7≤ne≤151019m-3; 0.3≤Te≤15keV; 0.15≤Ti≤1keV; Ti/Te:0.1…0.8 flexible shaping: elongation () up to 2.8, positive and negative triangularity (=-0.7…+1.0) 4MW/2s real time-controllable ECH-ECCD system, since 2000: X2 (ne≤4.21019m-3, cut-off) and X3 (ne≥3.51019m-3) continuous improvements in diagnostics and plasma control Motivation for upgrades — widening the parameter range of reactor relevant regimes Direct ion heating: 1 MW, 25 keV, deuterium neutral beam (installed in 2015, in experiment from 2016) access to Ti/Te≥1 (up to 3…5), including reactor relevant Te/Ti1, Ti up to 2…4keV 1 MW, 50-60 keV, neutral beam (2018) fast ion physics, optimized for high density plasma, especially in H-mode ECH upgrades: two new X3/X2, replacing two X2 (2015-2018) X3: 1.35MW  3.50MW 30.50MW/118GHz + 21MW/126&84GHz (dual frequency) X2: 2.70MW  4.85MW 30.45MW/82.7GHz + 21MW/126&84GHz + 20.75MW/84GHz  high  (ITER scenarios), lower collisionality II. Power sweep and modulation Neutral Beam Injector on TCV 6.6 6.4 6.2 6.0 5.8 5.6 1.08 1.13 1.18 1.23 1.28 1.33 1.38 Perveance (I/U3/2), ×105 A×V3/2 Beam width (cm) on calorimeter vs ion current Optimization at 4-6 power levels: perveance scan divergence minimum at fixed energy beam energy, RF power (ion current), suppression grid voltage, BM current UHV(energy), Ii(ion current)  functions of PO. interpolation between “optimization” points Control signals (DACs) - f(UHV, Ii, Mi, time)[Volts] Ion Source 30kV, 50A, deuterium 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Time, sec Pion: 290kW→1.22MW PO: 230kW→1.05MW EO: 15→25keV Iion: 19→49A IO: 17→42eq.A NBI shot #1678 (2015-12-10 11:58:46) 1.2 1.0 0.8 0.6 0.4 0.2 Power, MW Energy, keV 50 40 30 20 10 Current, A 25 15 5 Beam energy vs neutral beam power 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Neutral Power, MW 25 24 23 22 21 20 19 18 17 16 15 Energy, keV NBI shots #1675…1678 Injector layout: 1 – RF plasma source, 2 – magnetic screen, 3 – ion-optical system, 4 – neutral beam; 5 –adjusting device; 6 – ions source gate-valve; 7 – vacuum tank; 8 – cryopump cold head; 9 – liquid nitrogen volume; 10 – cryo-panels, 11 – neutralizer, 12 – bending magnet, 13 – diaphragm, 14 – ion dump for positive ions, 15 – calorimeter. Plasma Source inductively driven 40kW 4 MHz RF-discharge Neutral beam power fractions 76:17:7%, 24.8kV, deuterium Ion Optical System 3 spherical copper grids Ø250mm, focal length 3.6m NBI power steps with 5 ms transition time 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Time, sec 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 Power, MW NBI shots #1677, 1734…1743 (2015-12-11) NBI power modulation 200 Hz @ 730 kW and sweep 50 Hz 840/530 kW and (neutral power) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Time, sec 0.85 0.80 0.75 0.70 0.65 0.60 0.55 Power, MW NBI shots #1723…1732 (2015-12-11) III. First shots with NB heating Before NB heating: NBI assembling and preliminary tests – June-August 2015; Modification of calorimeter, integration with TCV – September-November 2015 NBI tests and optimisation on the calorimeter – December 2015 – January 2016 Tests of TCV first wall overheat protection system. First experiments with NB plasma heating: Beam duct cleaning – a few shots into plasma 50…200ms 5th NB shot in TCV plasma #051458, 29.01.2016 L-mode, plasma current IP:-240kA; 1.03 MW, 25 keV, deuterium, 0.52 sec. Preliminary observations: Ion (and electron) heating, increase of the plasma energy; Strong increase of toroidal rotation; Plasma fueling, limitation on plasma density. PNBI: 1.03 MW “ion power””neutralization efficiency” POH: 295→180→300 kW Plasma energy (WP, DML): 8→14→7kJ Bulk ion energy (Wi, CXRS): 3.5→6.5→2.5kJ Electron energy (We, TS): 3→6→3kJ Bulk energy (Wi+We): 8→13→6kJ Fast ions: ~1kJ IP: -240 kA favorable for fast ion first orbit losses neL: 3.91019 m-2 ne(0): 5.81019 m-3 shine-through ≤ 0.5% VI. NBI in EUROfusion MST1-TCV experiments 580 TCV shots with NB heating, since 27.01.2016 > 60% of experiments (program) requested NBH, 20 of 33 missions ~ 25% of TCV shots with NBH, availability – 85-90% 7-10% faults of control electronics and power supplies 0.3% breakdowns in ion optics per shot Experimental results and observations: ion temperature ×2–4, up to 2-2.5keV in L-mode, 2.5-3.5keV in H-mode (with 1MW NBI) CO-NBI toroidal rotation 100–300 km/s, -30…+30km/s without beam easier access of H-mode, control of sawtooth and ELM frequency Electron temperature: 0.9→1.2→0.9keV 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Plasma radius,  2.0 1.5 1.0 0.5 Electron temperature (Thomson scattering), keV Ion temperature: 0.65→2.0→0.55keV 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Plasma radius,  2.0 1.5 1.0 0.5 Ion temperature (CXRS, CVI), keV 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Plasma radius,  Electron density (Thomson scattering), ×1019m-3 7 6 5 4 3 2 1 Toroidal rotation (CXRS) +20→-160→+15 km/s 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Plasma radius,  Ion temperature (CXRS, CVI), keV 40 -40 -80 -120 -160 Ion temperature: 0.35→3.7→0.5keV 0 0.2 0.4 0.6 0.8 1.0 Plasma radius,  4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Ion Temperature, keV TCV #53362 Electron temperature: 1.1→1.4→0.9keV 0 0.2 0.4 0.6 0.8 1.0 Plasma radius,  2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Electron Temperature, keV TCV #53362 NB heating in ELMy H-mode Close to ASTRA prediction – Te/Ti:1.3/1.9keV in A.N.Karpushov, et al.; Upgrade of the TCV tokamak, first phase: Neutral beam heating system; Fusion Engineering and Design, (2015) DOI:10.1016/j.fusengdes.2015.01.052 References: A. Fasoli for the TCV Team; TCV heating and in-vessel upgrades for addressing DEMO physics issues; Nucl. Fusion 55 (2015) 043006; DOI:10.1088/0029-5515/55/4/043006 A.N.Karpushov, et al.; Upgrade of the TCV tokamak, first phase: Neutral beam heating system; Fusion Engineering and Design 96–97 (2015)493–497; DOI:10.1016/j.fusengdes.2015.01.052 Alexander N. Karpushov, Basil P. Duval, René Chavan, Emiliano Fable, Jean-Michel Mayor, Olivier Sauter, Henri Weisen; A scoping study of the application of neutral beam heating on the TCV tokamak; Fusion Engineering and Design, 86 (2011) 868–871 DOI:10.1016/j.fusengdes.2011.02.077 M. Toussaint, et al.; Beam duct for the 1 MW neutral beam heating injector on TCV, P3.27 (this conference) D. Fasel, et al.; Commissioning of the heating neutral beam injector on the TCV tokamak, P3.28 (this conference) Acknowledgements The authors are very grateful to Manfred Sauer (ex. Inst. fur Plasmaphys., Forschungszentrum Julich GmbH) for participation in the NBI installation and commissioning on the TCV, to Dr. David L. Keeling and Tim Robinson (EURATOM/CCFE Fusion Association, Culham Science Centre) for useful discussions and help with NBI operation during EUROfusion MST1 campaign, to members of SPC-EPFL and Budker INP teams involved in the work on manufacturing, installation, commissioning and operation of heating beam. This work supported in part by the Swiss National Science Foundation. E-mail address: alexander.karpushov@epfl.ch