Multiple Regression for Business

Slides:



Advertisements
Similar presentations
Kin 304 Regression Linear Regression Least Sum of Squares
Advertisements

BA 275 Quantitative Business Methods
Regresi Linear Sederhana Pertemuan 01 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Uji Kelinearan dan Keberartian Regresi Pertemuan 02 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi dan Korelasi Linear Pertemuan 19
CHAPTER 8 MULTIPLE REGRESSION ANALYSIS: THE PROBLEM OF INFERENCE
LINEAR REGRESSION: Evaluating Regression Models Overview Assumptions for Linear Regression Evaluating a Regression Model.
LINEAR REGRESSION: Evaluating Regression Models. Overview Assumptions for Linear Regression Evaluating a Regression Model.
LINEAR REGRESSION: Evaluating Regression Models. Overview Standard Error of the Estimate Goodness of Fit Coefficient of Determination Regression Coefficients.
Bivariate Regression CJ 526 Statistical Analysis in Criminal Justice.
Confidence intervals. Population mean Assumption: sample from normal distribution.
Korelasi dalam Regresi Linear Sederhana Pertemuan 03 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Pertemua 19 Regresi Linier
Korelasi dan Regresi Linear Sederhana Pertemuan 25
Ekonometrika Al Muizzuddin F. The key concept underlying regression analysis is the concept of the conditional expectation function (CEF), or population.
Regression Analysis What is regression ?What is regression ? Best-fit lineBest-fit line Least squareLeast square What is regression ?What is regression.
MTH 161: Introduction To Statistics
Multiple Regression Lab Chapter Topics Multiple Linear Regression Effects Levels of Measurement Dummy Variables 2.
Regression Models Residuals and Diagnosing the Quality of a Model.
1 Multiple Regression A single numerical response variable, Y. Multiple numerical explanatory variables, X 1, X 2,…, X k.
Simple Linear Regression. The term linear regression implies that  Y|x is linearly related to x by the population regression equation  Y|x =  +  x.
Intro to Regression POL 242. Summary Regression is the process by which we fit a line to depict the relationship between two variables (usually both interval.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 13-1 Introduction to Regression Analysis Regression analysis is used.
Environmental Modeling Basic Testing Methods - Statistics III.
 Relationship between education level, income, and length of time out of school  Our new regression equation: is the predicted value of the dependent.
Linear and Non Linear Equation for Economics Dr. Ananda Sabil Hussein.
Multiple regression.
Review Session Linear Regression. Correlation Pearson’s r –Measures the strength and type of a relationship between the x and y variables –Ranges from.
Differential Equations Linear Equations with Variable Coefficients.
1 Pertemuan 22 Regresi dan Korelasi Linier Sederhana-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
ESTIMATION METHODS We know how to calculate confidence intervals for estimates of  and  2 Now, we need procedures to calculate  and  2, themselves.
Venn diagram shows (R 2 ) the amount of variance in Y that is explained by X. Unexplained Variance in Y. (1-R 2 ) =.36, 36% R 2 =.64 (64%)
Chapter 14 Introduction to Regression Analysis. Objectives Regression Analysis Uses of Regression Analysis Method of Least Squares Difference between.
Statistics 350 Lecture 2. Today Last Day: Section Today: Section 1.6 Homework #1: Chapter 1 Problems (page 33-38): 2, 5, 6, 7, 22, 26, 33, 34,
Chapter 12 Simple Regression Statistika.  Analisis regresi adalah analisis hubungan linear antar 2 variabel random yang mempunyai hub linear,  Variabel.
Multiple Regression Scott Hudson January 24, 2011.
رگرسیون چندگانه Multiple Regression
Research Methods: 2 M.Sc. Physiotherapy/Podiatry/Pain Correlation and Regression.
Regression Overview. Definition The simple linear regression model is given by the linear equation where is the y-intercept for the population data, is.
Introduction to Differential Equations
METODE PERAMALAN Pertemuan 16
Probability and Statistics for Computer Scientists Second Edition, By: Michael Baron Section 11.1: Least squares estimation CIS Computational.
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
APLIKASI UJI STATISTIK PARAMETRIK NON PARAMETRIK Satu Sampel
Statistics in WR: Lecture 11
Ch12.1 Simple Linear Regression
INFERENSIA KORELASI DAN REGRESI LINIER SEDERHANA Pertemuan 12
Multiple Regression.
BIVARIATE REGRESSION AND CORRELATION
Probability and Statistics for Computer Scientists Second Edition, By: Michael Baron Section 11.1: Least squares estimation CIS Computational.
Correlation and Simple Linear Regression
Residuals and Diagnosing the Quality of a Model
Linear Regression.
Linear Regression.
The regression model in matrix form
The Regression Model Suppose we wish to estimate the parameters of the following relationship: A common method is to choose parameters to minimise the.
Example 1 5. Use SPSS output ANOVAb Model Sum of Squares df
Correlation and Simple Linear Regression
Simple Linear Regression and Correlation
Multivariate Models Regression.
Adequacy of Linear Regression Models
Linear Regression Summer School IFPRI
Adequacy of Linear Regression Models
Cases. Simple Regression Linear Multiple Regression.
Table 2. Regression statistics for independent and dependent variables
Regression and Correlation of Data
© The Author(s) Published by Science and Education Publishing.
© The Author(s) Published by Science and Education Publishing.
Correlation and Simple Linear Regression
Correlation and Simple Linear Regression
Presentation transcript:

Multiple Regression for Business Dr. Ananda Sabil Hussein

Regression Y = a + b1X1 + e Y = dependent variable A = constant X = independent variabel E = residual

Multiple regression Y = a + b1X1 + b2X2 + b3X3 + e Equation should Best Linear Unbiased Estimate (BLUE) Normality Heterocedasticity Non-Multicolinearity Non-Autocorrelation (for data time series)

Unstandardized Coefficient   Variabel Βeta thitung Sig. Keterangan Unstandardized Coefficient X1 0.077 1.281 0.203 Tidak Signifikan X2 0.522 4.760 0.000 Signifikan R = 0,560 R square = 0,314 Koefisien Determinasi (Adj.R2) = 0,300 F-Hitung = 22.166 F-Tabel = 3.09 Sig.F = 0.000 t- tabel = 1,985 α = 0,05 n =100 Persamaan regresi = (3.512)+0,077X1 + 0,522X2  [AH1]Ini kok angka d tabelnya ga ada ya?? Ini tabel standardized ya??? Coba buat tabel yang standardized

Normality Test Variabel Kolmogorov – Smirnov Z Asymp. Sig. (2-tailed) X1 1.241 0.092 X2 0.912 0.376 Y 0.944 0.334

Non Multikolinearitas Non-Multicolinear Variabel Independen Tolerance VIF Keterangan X1 0.129 3.108 Non Multikolinearitas X2 0.435 2.400

Non-Heterocedasticity