Exercise 2 solution Lecturer: Miss Anis Atikah Ahmad

Slides:



Advertisements
Similar presentations
Tutorial 3 solutions Lecturer: Miss Anis Atikah Ahmad
Advertisements

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Tutorial 2 solutions Lecturer: Miss Anis Atikah Ahmad
Conversion and Reactor sizing
ERT 316: REACTION ENGINEERING CHAPTER 2 CONVERSION & REACTOR SIZING
Chemical Reaction Engineering
Steady State Nonisothermal Reactor Design
Conversion and Reactor Sizing
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 19 Tuesday 3/18/08 Gas Phase Reactions Trends and Optimuns.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
CBE343 Jan 23, APPLICATION OF THE DESIGN EQUATION FOR CONTINUOUS-FLOW REACTORS X -r A [mol/m 3 ∙s]
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture18 Thursday 3/13/08 Solution to Tuesdays In-class Problem. User Friendly Energy Balance Derivations Adiabatic (Tuesday’s lecture). Heat Exchange.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
SABIC Chair in Catalysis at KAU Chemical Reaction Engineering Dr. Yahia Alhamed.
General Mole Balance Equation Batch
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering Asynchronous Video Series Chapter 2: Conversion and Reactors in Series H. Scott Fogler, Ph.D.
Tutorial 4 solutions Lecturer: Miss Anis Atikah Ahmad
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Kjemisk reaksjonsteknikk Chemical Reaction Engineering
By Noor Amirah Abdul Halim.  Parallel reactions  Series reactions  Complex reactions (parallel and series reactions)  Independent reactions.
ITK-330 Chemical Reaction Engineering
L3b-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with X A :
L4-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. Ideal CSTR Design Eq with X A :
Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L12-1 Review: Thermochemistry for Nonisothermal.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
L15-1 Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois, Urbana-Champaign. L15: Nonisothermal Reactor Example.
1 - 08/12/2015 Department of Chemical Engineering Lecture 5 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Isothermal reaction design algorithm.
Chemical Reaction Engineering 1 제 2 장 Conversion and Reactor Sizing 반응공학 1.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Conversion and Reactor Sizing Lec 4 week 4. Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above.
Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Isothermal reactor design
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
ERT 316 R EACTION E NGINEERING C HAPTER 5: C OLLECTION AND A NALYSIS OF R ATE D ATA BY ANIS ATIKAH AHMAD.
E XERCISE 1 SOLUTION Lecturer: Miss Anis Atikah Ahmad Tel:
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering
Review: Design Eq & Conversion
CSTR in series and in parallel
X AND R CHART EXAMPLE IN-CLASS EXERCISE
Conversion and reactor sizing
Chapter Two: Conversion & Reactor Sizing
Steady-state Nonisothermal reactor Design Part I
Steady-state Nonisothermal reactor Design Part I
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
P8-8 The elementary gas phase reaction A  B + C is carried out adiabatically in PFR packed with catalyst. Pure A enters the reactor at a volumetric flow.
Steady-state Nonisothermal reactor Design Part I
Chemical Reaction Engineering Asynchronous Video Series
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ISOTHERMAL REACTOR DESIGN
Conversion and the Design Equations
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Mustafa Nasser, PhD, MSc, BSc Chemical Engineering
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Kinetics and Reactor Design
Review: Design Eq & Conversion
Presentation transcript:

Exercise 2 solution Lecturer: Miss Anis Atikah Ahmad Email: anisatikah@unimap.edu.my

Questions X 0.2 0.4 0.45 0.5 0.6 0.8 0.9 -rA (mol/dm3.min 1.0 1.67 5.0 The exothermic reaction A--->B + C was carried out adiabatically and the following data recorded: The entering molar flow rate of A was 300 mol/min. (a) What are the PFR and CSTR volumes necessary to achieve 40 % conversion? (b) Over what range of conversions would the CSTR and PFR reactor volumes be identical? (c) What is the maximum conversion that can be achieved in a 105 dm3 CSTR? (d) What conversion can be achieved if a 72 dm3 PFR is followed in series by a 24 dm3 CSTR? (e) What conversion can be achieved if a 24 dm3 CSTR is followed in a series by a 72 dm3 PFR? X 0.2 0.4 0.45 0.5 0.6 0.8 0.9 -rA (mol/dm3.min 1.0 1.67 5.0 1.25 0.91

Part (A) What are the PFR and CSTR volumes necessary to achieve 40 % conversion? PFR Volume: Using Simpson One-Third Rule; Recall Simpson One-Third Rule Formula:

Part (A) X 0.2 0.4 0.45 0.5 0.6 0.8 0.9 -rA (mol/dm3.min) 1.0 1.67 5.0 0.2 0.4 0.45 0.5 0.6 0.8 0.9 -rA (mol/dm3.min) 1.0 1.67 5.0 1.25 0.91 FA0/-rA (dm3) 300 180 60 240 330 Levelspiel Plot VPFR

Part (a) CSTR Volume: Substituting the value of FA0/–rA at X=0.4; VCSTR Levelspiel Plot

The volume of both reactors are identical at X=0.4-0.6, Part (B) Over what range of conversions would the CSTR and PFR reactor volumes be identical? From Levelspiel Plot; The volume of both reactors are identical at X=0.4-0.6,

Using Simpson One-Third Rule Part (B) Over what range of conversions would the CSTR and PFR reactor volumes be identical? Proving by calculation; Volume of PFR Using Simpson One-Third Rule Volume of CSTR

Part (c) What is the maximum conversion that can be achieved in a 105 dm3 CSTR? By trial and error, calculate what is X that gives a CSTR volume of 105 dm3 Trial 1: X=0.6, Trial 2: X=0.8, Trial 3: X=0.7, X=0.7 The max conversion can be achieved in 105 dm3 of CSTR is 0.7

Now, we know that the conversion must be between 0.6-0.7. Part (d) What conversion can be achieved if a 72 dm3 PFR is followed in series by a 24 dm3 CSTR? FA0=300 mol/dm3 X1=0.4 From part (a) VPFR=72 dm3 VCSTR=24 dm3 By trial and error, calculate what is X2 that gives a CSTR volume of 24 dm3 Trial 1: X2=0.6, Trial 2: X2=0.7, X2=? Now, we know that the conversion must be between 0.6-0.7.

Part (d) What conversion can be achieved if a 72 dm3 PFR is followed in series by a 24 dm3 CSTR? FA0=300 mol/dm3 X1=0.4 VPFR=72 dm3 VCSTR=24 dm3 Trial 3: X2=0.64, X2=? X=0.64 X=0.64 can be achieved if a 72 dm3 PFR is followed in series by a 24 dm3 CSTR.

Part (e) What conversion can be achieved if a 24 dm3 CSTR is followed in a series by a 72 dm3 PFR? FA0=300 mol/dm3 From part (a) VCSTR=24 dm3 X1=0.4 VPFR=72 dm3 X2=? By trial and error, calculate what is X2 that gives a PFR volume of 72 dm3 Trial 1: X2=0.8,

Part (e) What conversion can be achieved if a 24 dm3 CSTR is followed in a series by a 72 dm3 PFR? FA0=300 mol/dm3 VCSTR=24 dm3 X1=0.4 VPFR=72 dm3 X2=? By trial and error, calculate what is X2 that gives a PFR volume of 72 dm3 Trial 2: X2=0.9,

Part (e) What conversion can be achieved if a 24 dm3 CSTR is followed in a series by a 72 dm3 PFR? Trial 3: X2=0.91, X=0.91 can be achieved if a 24 dm3 CSTR is followed in a series by a 72 dm3 PFR

THANK YOU