An Example. The question Data Analyses Conclusions.

Slides:



Advertisements
Similar presentations
Climate Change, Disease, and Amphibian Declines by Jason R. Rohr University of South Florida Department of Biology, SCA E. Fowler Ave. Tampa,
Advertisements

It all begins with the sun……
Analysis of Sales of Food Services & Drinking Places Julianne Shan Ho-Jung Hsiao Christian Treubig Lindsey Aspel Brooks Allen Edmund Becdach.
Welhouse, L.J. 1 *, Lazzara, M.A. 2, Tripoli, G.J. 1, Keller, L.M. 1 1 Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison.
Atmosphere & Climate Change
El Niño, La Niña and the Southern Oscillation
Forecasting JY Le Boudec 1. Contents 1.What is forecasting ? 2.Linear Regression 3.Avoiding Overfitting 4.Differencing 5.ARMA models 6.Sparse ARMA models.
Cross-spectral analysis on Net Ecosystem Exchange: Dominant timescale and correlations among key ecosystem variables over the Ameriflux Harvard forest.
El Nino – Southern Oscillation - Southern Oscillation (atmosphere) - El Nino (ocean) - change in equatorial Pacific circulation - produces global climate.
NY Times 25 November Stat Nov 2008 D. R. Brillinger Chapter 14 - Examples continued Question Data Analyses Conclusions.
Extreme Events and Climate Variability. Issues: Scientists are telling us that global warming means more extreme weather. Every year we seem to experience.
BASICS OF EL NIÑO- SOUTHERN OSCILLATION (ENSO) Ernesto R. Verceles PAGASA.
Climate and Climate Change. Climate Climate is the average weather conditions in an area over a long period of time. Climate is determined by a variety.
(Mt/Ag/EnSc/EnSt 404/504 - Global Change) Observed Surface & Atmosphere (from IPCC WG-I, Chapter 3) Observed Changes in Surface and Atmosphere Climate.
SIO 210: ENSO conclusion Dec. 2, 2004 Interannual variability (end of this lecture + next) –Tropical Pacific: El Nino/Southern Oscillation –Southern Ocean.
BOX JENKINS METHODOLOGY
Non-continuous Relationships If the relationship between the dependent variable and an independent variable is non-continuous a slope dummy variable can.
Are Exceptionally Cold Vermont Winters Returning? Dr. Jay Shafer July 1, 2015 Lyndon State College 1.
School of Information Technologies The University of Sydney Australia Spatio-Temporal Analysis of the relationship between South American Precipitation.
25.3 Weather Instruments Winds are always labeled from the direction from which they blow. Wind vane – most common, located on buildings; always point.
Sea Level Change in Hong Kong and ENSO DW Zheng 1,2, XL Ding 1, YQ Chen 1, C Huang 2 1 Department of Land Surveying and Geo-Informatics Hong Kong Polytechnic.
Assessing Predictability of Seasonal Precipitation for May-June-July in Kazakhstan Tony Barnston, IRI, New York, US.
Intervention models Something’s happened around t = 200.
3,2,1...Blast off! Please get out paper and read the board! *** Corrected link to second carbon footprint now on the HUB!
El Nino! By: Katie Durham & Mike Magnuson The Climate Event of the Century.
CLIMATE CHANGE DIFFERENT DATA DIFFERENT PERSPECTIVES.
References Australian Government, Bureau of Meteorology web site, Accessed January Elliott, W. P. and J. K. Angell.
Objective Data  The outlined square marks the area of the study arranged in most cases in a coarse 24X24 grid.  Data from the NASA Langley Research Center.
Southern Oscillation- Atmospheric component of ocean's El Niño. Oscillation in the distribution of high and low pressure systems across the equatorial.
Infrasounds and Background Free Oscillations Naoki Kobayashi [1] T. Kusumi and N. Suda [2] [1] Tokyo Tech [2] Hiroshima Univ.
Statistical Summary ATM 305 – 12 November Review of Primary Statistics Mean Median Mode x i - scalar quantity N - number of observations Value at.
STAT 497 LECTURE NOTE 9 DIAGNOSTIC CHECKS 1. After identifying and estimating a time series model, the goodness-of-fit of the model and validity of the.
Forecasting (prediction) limits Example Linear deterministic trend estimated by least-squares Note! The average of the numbers 1, 2, …, t is.
Environmental Science Chapter 13 Review Chlorofluorocarbons – compounds that contain chlorine, & cause ozone destruction in upper atm. Climate – described.
Discovery of Climate Indices using Clustering Michael Steinbach Steven Klooster Christopher Potter Rohit Bhingare, School of Informatics University of.
Material for Exam 2 starts HERE. Oceanic Currents Surface Currents –Cold = high latitude –Warm = low latitude –Gyres: circulate in which directions?
An Example. The question Data Analyses Conclusions.
El Nino BIG IDEA: Abiotic and biotic factors influence the environment.
Exploring the Relationship Between North Atlantic and Global Temperature Anomalies Using Bivariate and Time Series Analysis EAS 4480 Ryan Schilling.
Complication in Climate Change
Using teleconnections from the Pacific and Indian oceans for short-
25.3 Weather Instruments Wind vane – most common, located on
El Niño / Southern Oscillation
Challenges of Seasonal Forecasting: El Niño, La Niña, and La Nada
Daylength Local Mesoscale Winds Chinook Winds (Foehn) Loma, MT: January 15, 1972, the temperature rose from -54 to 49°F (-48 to 9°C), a 103°F (58°C)
Institut für Meteorologie
Air-Sea Interactions The atmosphere and ocean form a coupled system, exchanging heat, momentum and water at the interface. Emmanuel, K. A. 1986: An air-sea.
Time-Series Evaluation of an Experimental
ATM 305 – 16 November 2017 Lance Bosart and Philippe Papin
KUDAKWASHE KELVIN CHIKUKWA R169999D
El Niño and La Niña.
STAT 497 LECTURE NOTE 9 DIAGNOSTIC CHECKS.
El Nino and La Nina An important atmospheric variation that has an average period of three to seven years. Goes between El Nino, Neutral, and La Nina (ENSO.
EL NINO Figure (a) Average sea surface temperature departures from normal as measured by satellite. During El Niño conditions upwelling is greatly.
Climate Verses Weather
Oceanic Influences on Climate
El Nino-Southern Oscillation
NY Times 25 November 2008.
With joint time series data and either a bivariate model, data (X(t),Y(t); t = 0,...,T-1) or a regression/transfer function model the following R functions.
Modelling Climate and Water Isotope Signatures of El Niño in the Pliocene Julia Tindall and Alan Haywood AGU Fall Meeting 15th December 2015.
The Atmosphere: Part 9: Short term climate variability
Global Climate Change.
Climate Changes due to Natural Processes
Relationship between ENSO and SST variation
Climate and the Ocean.
Vector AutoRegression models (VARs)
Linear Filters.
Predictive Modeling of Temperature and Precipitation Over Arizona
Section 4 Earth’s Changing Climate
Chap 7: Seasonal ARIMA Models
Presentation transcript:

An Example. The question Data Analyses Conclusions

Monthly mean air temperature at Recife 1953-1962 The question: What is the relationship between temperatures in Recife and El Nino? Objectives - to layout analyses - to explore the data for surprises - predicted values - signal + noise? - ...

Finding the data. Google with various key words: temperature, Recife, ... "Eventually lead" to: cdiac.ornl.gov/ftp/ndp041 Carbon dioxide information analysis center! Had to discover Recife Curado station id - 3068290000 Years 1949-1988 Searched an inappropriate ste for a long time (Looked at Brasil sites too, but that didn't turn up the data)

notice -9999 replace by NA file: recifecurado The web data. monthly notice -9999 replace by NA file: recifecurado 30682900001941 274 279 268 267 260 250 246 245 256 260 262 266 30682900001942 273 268 270 270 256 247 236 233 252 260 270 265 30682900001943 270 270 273 261 253 245 236 238 247 260 264 268 30682900001944 269 272 275 263 254 247 239 232 241 256 267 273 30682900001945 278 268 278 271 256 240 236 243 251 258 268 267 30682900001946 268 277 271 259 258 247 247 247 249 257 261 266 30682900001947 269 270 268-9999 253 246 244 245 249 262 268-9999 30682900001948 273 271 270 269 255 249 243 240 248-9999 264 270 30682900001949 272 274 278 266 252 246 240 236 250 261 265 271 30682900001950 273 280 269 251 248 243 235 234 248 258 264-9999 30682900001951 269 267 275 265 254 238 233 238 247 259 263-9999 30682900001952 272 278 267 262 252 245 240 238 253 256 263 268

How to handle missing values? Interpolate? Model? ...? junk<-scan("recifecurado") junk1<-matrix(junk,ncol=48) junk2<-junk1[2:13,] # years in first row series<-c(junk2)/10 # for degrees centigrade length(series[is.na(series)]) #17 - need to understand missingness Interpolation series1<-series for(i in 2:(length(series)-1)){if(is.na(series[i]))series1[i]<-.5*series[i-1] +.5*series[i+1]}

plot(xaxis,series1,type="l",xlab="year",ylab="mean temp (degrees C)",las=1) title("Mean monthly temperatures 1949-88 Recife Curado") abline(h=mean(series1))

There is seasonality and variability Restricted range in mid-sixties - nonconstant mean level? ylim<-range(series1) par(mfrow=c(2,1)) plot(lowess(xaxis,series1),type="l",ylim=ylim,xlab="year",ylab="degrees C",main="Smoothed Recife series") abline(h=mean(series1)) junk20<-lowess(xaxis,series1) plot(xaxis,series1-junk20$y,type="l",xlab="year",ylab="degrees C",main="Residuals") abline(h=mean(series1-junk20$y))

par(mfrow=c(1,1)) acf(series1,las=1,xlab="lag(mo)",ylab="",main="autocorrelation recife temperatures",lag.max=50,ylim=c(-1,1))

More confirmation of period 12 Remember the interpretation of the error lines Note that nearby values are highly correlated

spectrum(series1,xlab="frequency (cycles/month)",las=1)

Note peaks at frequency 1/12 and harmonics Further confirmation of period 12 Note log scale for y-axis Note vertical line in upper right Gives uncertainty

What is the shape of the seasonal? junk4<-matrix(series1,nrow=12) junk5<-apply(junk4,1,mean) plot(junk5,type="l",las=1) abline(h=mean(junk5))

Cooler in July-Aug Southern Hemisphere Uncertainty?

Cooler in July-August. Southern hemisphere Part of a longer cycle? El Nino explanatory? After "removing" trend middle has been pulled up Need uncertainties Back to original data

Remove seasonal series2<-series1 for(i in 1:48){ for(j in 1:12){ series2[(i-1)*12+j]<-series1[(i-1)*12+j]-junk5[j] } par(mfrow=c(2,1)) plot(xaxis,series2,type="l",xlab="year",ylab="residual",main="Series after removing seasonal",las=1) abline(h=0) ylim<-range(series2) plot(xaxis,series1-mean(series1),type="l",xlab="year",ylab="degreesC",main="Mean removed series",las=1,ylim=ylim) abline(h=mean(series1-mean(series1)))

original variance 1.342 adjusted .248

par(mfrow=c(2,1)) acf(series2,lag.max=50,las=1,xlab="lag (mo)",main="Ajusted by removing monthly means",las=1) acf(diff(series1,lag=12),lag.max=50,xlab="lag (mo)",main="Order 12 differenced series")

Frequency domain analysis. par(mfrow=c(2,1)) junk9<-spec.pgram(series1,taper=0,detrend=F,demean=F,spans=5,plot=F) ylim<-range(junk9$spec) junk9<-spec.pgram(series1,taper=0,detrend=F,demean=F,spans=5,xlab="frequency (cycles/mo)",las=1,main="Original series") junk10<-spec.pgram(series2,taper=0,detrend=F,demean=F,spans=5,ylim=ylim,main="Monthly means removed",las=1)

Work remains on seasonal Residual "not" white noise

Time domain distributions

Parametric model. SARIMA ? Thinking about prediction, consider Yt = αYt-1 + βYt-12 + Nt with some ARMA for Nt Check seasonal residuals for normality Hope to end up with white noise

Junk<-arima(series1,order=c(1,0,1),seasonal=list(order=c(1,0,1),period=12)) Call: arima(x = series1, order = c(1, 0, 1), seasonal = list(order = c(1, 0, 1), period = 12)) Coefficients: ar1 ma1 sar1 sma1 intercept 0.7604 -0.3344 0.9990 -0.9201 25.6117 s.e. 0.0610 0.0968 0.0007 0.0220 0.6100 sigma^2 estimated as 0.1771: log likelihood = -337.48, aic = 686.97

tsdiag(Junk,gof.lag=25)

Junk<-arima(series1,order=c(1,0,1),seasonal=list(order=c(1,0,1),period=12)) postscript(file="recifeplots1a.ps",paper="letter",hor=T) Junk2<-predict(Junk,n.ahead=24) Junk3<-c(series1,Junk2$pred) Junk3a<-c(rep(0,576),2*Junk2$se) Junk3b<-c(rep(0,576),-2*Junk2$se) Junk4a<-Junk3+Junk3a;Junk4b<-Junk3+Junk3b ylim<-range(Junk4a,Junk4b) par(mfrow=c(1,1)) xaxis1<-1941+(1:length(Junk3)/12) plot(xaxis1[xaxis1>1983],Junk4a[xaxis1>1983],type="l",las=1,ylim=ylim,col="red",xlab="year",ylab="degrees C",main="Data + predictions") lines(xaxis1[xaxis1>1983],Junk4b[xaxis1>1983],col="red") lines(xaxis1[xaxis1>1983],Junk3[xaxis1>1983],col="blue") lines(xaxis[xaxis>1983],series1[xaxis>1983])

Two series Bivariate case {Xt, Yt} - jointly distributed Linear time invariant / transfer function model nonparametric/parametric approaches

Southern Oscillation Index El Niño: global coupled ocean-atmosphere phenomenon. The Pacific ocean signatures, El Niño and La Niña are important temperature fluctuations in surface waters of the tropical Eastern Pacific Ocean

Southern Oscillation reflects monthly or seasonal fluctuations in the air pressure difference between Tahiti and Darwin www.cpc.ncep.noaa.gov/data/soi

junk<-scan("recifecurado") junk1<-matrix(junk,ncol=48) junk6<-junk1[1,] junk1<-junk1[,junk6>1950] junk2<-junk1[2:13,] series<-c(junk2)/10 length(series[is.na(series)]) #13 xaxis<-1951+(1:length(series)/12) series1<-series junk4<-matrix(series1,nrow=12) junk5<-apply(junk4,1,mean) for(i in 2:(length(series)-1)){if(is.na(series[i]))series1[i]<-.5*series[i-1]+.5*series[i+1]} series2<-series1 for(i in 1:38){ for(j in 1:12){ series2[(i-1)*12+j]<-series1[(i-1)*12+j]-junk5[j]}}

kunk<-scan("SOIa.dat") kunk1<-matrix(kunk,ncol=58); kunk6<-kunk1[1,] kunk1<-kunk1[,kunk6<1989] kunk2<-kunk1[2:13,] teries<-c(kunk2) length(teries[is.na(teries)]) #0 teries1<-teries; teries2<-teries1 postscript(file="recifeplots3.ps",paper="letter",hor=T) par(mfrow=c(2,1)) plot(xaxis,series2,type="l",las=1,xlab="year",ylab="",main="Seasonally adjusted Recife temps") plot(xaxis,teries2,type="l",las=1,xlab="year",ylab="",main="Southern Oscillation Index")

postscript(file="recifeplots2.ps",paper="letter",hor=F) par(mfrow=c(1,1)) acf(cbind(series2,teries2))

junk10<-cbind(series2,teries2) junk11<-spec.pgram(junk10,plot=F,taper=0,detrend=F,demean=F,spans=11) par(mfcol=c(2,2)) plot(junk11$freq,10**(.1*junk11$spec[,2]),log="y",main="SOIspectrum", xlab="frequency", ylab="", las=1,type="l") plot(junk11$freq,junk11$coh,main="Coherence",xlab="frequency",ylab="",las=1,ylim=c(0,1),type="l") junkh<-1-(1-.95)**(1/(.5*junk11$df-1)) abline(h=junkh) plot(junk11$freq,10**(.1*junk11$spec[,1]),log="y",main="Seasonally corrected Recife spectrum",xlab="frequency", ylab="",las=1, type="l")

SARIMAX Yt = αYt-1 + βYt-12 + γXt + Nt ar1 ma1 sar1 sma1 intercept teries1 0.7885 -0.3717 0.9996 -0.9474 25.5572 -0.0255 s.e. 0.0610 0.1014 0.0006 0.0321 0.6403 0.0149 sigma^2 estimated as 0.1792: log likelihood = -275.68, aic = 565.35 Junk1<-arima(series1,order=c(1,0,1),seasonal=list(order=c(1,0,1),period=12),xreg=teries1)

The answer to the question: There is a hint of a linear time invariant relationship.