Homework: Maintenance Sheet Due Thursday. Unit Test Friday

Slides:



Advertisements
Similar presentations
Proving the Distance Formula
Advertisements

Introduction Finding the distance between two points on a coordinate system is similar to finding the distance between two points on a number line. It.
Do Now: Welcome back! Pass out calculators.
Bell Work: Find the hypotenuse of a triangle with leg lengths of 5 and 6 cm.
NGSSS MA.8.G.2.4 The student will be able to: Validate and apply Pythagorean Theorem to find distances in real world situations or between points in the.
Finding Distance by using the Pythagorean Theorem
What are we going to do? CFU On your whiteboards, draw a right triangle. Label the hypotenuse. Label the legs. Students, you already know the parts of.
EXAMPLE 4 SOLUTION Method 1: Use a Pythagorean triple. A common Pythagorean triple is 5, 12, 13. Notice that if you multiply the lengths of the legs of.
TODAY IN GEOMETRY… Warm Up: Simplifying Radicals
TODAY IN GEOMETRY…  Practice: Solving missing sides using the Pythagorean Theorem  Learning Target 1: Use the Converse of the Pythagorean Theorem determine.
Pythagorean Triples In addition to level 3.0 and beyond what was taught in class, the student may:  Make connection with other concepts in math.
EXAMPLE 4 Find the length of a hypotenuse using two methods SOLUTION Find the length of the hypotenuse of the right triangle. Method 1: Use a Pythagorean.
The Pythagorean Theorem. The Right Triangle A right triangle is a triangle that contains one right angle. A right angle is 90 o Right Angle.
PYTHAGOREAN THEOREM. PYTHAGORAS HOMEWORK There are many different proofs that exist that proof the Pythagorean Theorem. Find one and know it for the.
The Pythagorean Theorem x z y. For this proof we must draw ANY right Triangle: Label the Legs “a” and “b” and the hypotenuse “c” a b c.
EXAMPLE 1 Find the length of a hypotenuse SOLUTION Find the length of the hypotenuse of the right triangle. (hypotenuse) 2 = (leg) 2 + (leg) 2 Pythagorean.
The Pythagorean Theorem. 8/18/20152 The Pythagorean Theorem “For any right triangle, the sum of the areas of the two small squares is equal to the area.
Introduction Finding the distance between two points on a coordinate system is similar to finding the distance between two points on a number line. It.
4.4: THE PYTHAGOREAN THEOREM AND DISTANCE FORMULA
6-3 Warm Up Problem of the Day Lesson Presentation
Benchmark 40 I can find the missing side of a right triangle using the Pythagorean Theorem.
Pythagorean Theorem Use the Pythagorean Theorem to find the missing length of the right triangle. 1.
The Pythagorean Theorem
Section 11.6 Pythagorean Theorem. Pythagorean Theorem: In any right triangle, the square of the length of the hypotenuse equals the sum of the squares.
6-3 The Pythagorean Theorem Course 3 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Bellwork 1) 2) 3) Simplify. Lesson 7.1 Apply the Pythagorean Theorem.
Pythagorean Theorem Rochelle Williams TEC 539 Grand Canyon University July 7, 2010.
Monday, March 2 Approximate square roots on a calculator. Solve square root equations. Use Pythagorean Theorem to find missing dimension on a right triangle.
OBJECTIVE I will use the Pythagorean Theorem to find missing sides lengths of a RIGHT triangle.
The Pythagorean Theorem Only works for right triangles.
Pythagorean Theorem Converse Special Triangles. Pythagorean Theorem What do you remember? Right Triangles Hypotenuse – longest side Legs – two shorter.
EXAMPLE 2 Use the Pythagorean theorem A right triangle has one leg that is 2 inches longer than the other leg. The length of the hypotenuse is 10 inches.
 Remember the pattern for right triangles: Area of small square + Area of medium square = Area of large square.
The Pythagorean Theorem The Ladder Problem. Right Triangles Longest side is the hypotenuse, side c (opposite the 90 o angle) The other two sides are the.
Pythagorean Theorem and Special Right Triangles. Anatomy of a Right Triangle Why is a right triangle called a right triangle? Because it is a triangle.
Pythagorean Theorem & its Converse 8 th Grade Math Standards M.8.G.6- Explain a proof of the Pythagorean Theorem and its converse. M.8.G.7 - Apply the.
Geometry 7-5 Areas of Regular Polygons. Review Areas.
Chapter 10 Pythagorean Theorem. hypotenuse Leg C – 88 In a right triangle, if a and b are the lengths of the legs and c is the length of the hypotenuse,
Applying Pythagorean Theorem
Warm Up Simplify the square roots
Pythagorean Theorem and it’s Converse
The Distance and Midpoint Formulas
Homework: Maintenance Sheet Due Thursday
Bellringer or Get A day.
Midpoint And Distance in the Coordinate Plane
Homework Check: 11. C, 12.B, 13.B, 14. B, 15.A, 16.D, 17.B, 18.C
Homework Due Thursday Unit Test Friday W.A.M: Writing about MATH 1-5
Homework: Maintenance Sheet due Thursday, Comprehensive Test on Friday
a2 + b2 = c2 Pythagorean Theorem c c b b a a
If a2 + b2 = c2, then the triangle is a RIGHT TRIANGLE.
6-3 The Pythagorean Theorem Pythagorean Theorem.
Math Humor Q: What keeps a square from moving?.
5.7: THE PYTHAGOREAN THEOREM (REVIEW) AND DISTANCE FORMULA
Calendar for Exponent Applications Bloom Ball
Unit 5: Geometric and Algebraic Connections
Homework: Maintenance Sheet 11-18
Pythagorean Theorem Practice
Homework Due Thursday Comprehensive Test 2 - Friday
Applying Pythagorean Theorem
Word Splash Create you own word splash using a focus word. Let NO one know your word. Use other words to describe that word. We will have to guess which.
Comprehensive Test Friday
Maintenance Sheet 7 Due Friday MGSE8. EE. 7a
Maintenance Sheet 7 Due Friday MGSE8. EE. 7a
Maintenance Sheet 7 Due Friday MGSE8. EE. 7a
Homework Due Tomorrow Comprehensive Test 2 Friday Menu Choice Board Due Friday MGSE8.EE.7a. Give examples of linear equations in one variable with one.
Homework Due Thursday Comprehensive Test 2 - Friday
Bellringer: Study Over Class Notes
Triangle Relationships
Complete the Thursday WAM. *Writing about Math*
Maintenance Sheet 10 Due Friday *1st AR book due friday
Presentation transcript:

Homework: Maintenance Sheet Due Thursday. Unit Test Friday Homework: Maintenance Sheet Due Thursday *Unit Test Friday *Missing work due 12/14 (Monday) W.A.M 5-6 Find the distance between two points Independent Practice Analyze (TOD) •I can solve equations of the form x2 = p and x3 = p using square or cube roots. •I can give or explain a proof of the Pythagorean Theorem and its converse (prove perpendicular sides or right triangle). •I can apply the Pythagorean Theorem in real-world situations or drawings to find unknown side lengths in right triangles in two and three dimensions. •I can use the Pythagorean Theorem to find the distance between two points on a coordinate system. W.A.M 5-6

•I can solve equations of the form x2 = p and x3 = p using square or cube roots. •I can give or explain a proof of the Pythagorean Theorem and its converse (prove perpendicular sides or right triangle). •I can apply the Pythagorean Theorem in real-world situations or drawings to find unknown side lengths in right triangles in two and three dimensions. •I can use the Pythagorean Theorem to find the distance between two points on a coordinate system. Sue left her house traveling due west towards the store. After 15 yards she traveled due north 20 yards to the store. When she left the store she cut across the field and traveled along a straight path. How much shorter was the path Sue took home than the path she took to the store?

•I can solve equations of the form x2 = p and x3 = p using square or cube roots. •I can give or explain a proof of the Pythagorean Theorem and its converse (prove perpendicular sides or right triangle). •I can apply the Pythagorean Theorem in real-world situations or drawings to find unknown side lengths in right triangles in two and three dimensions. •I can use the Pythagorean Theorem to find the distance between two points on a coordinate system. Create a right triangle and apply the Pythagorean theorem. Use the distance formula -2 -5 = -7 3-7= -4

Finish? Work on practice yesterday with partner •I can solve equations of the form x2 = p and x3 = p using square or cube roots. •I can give or explain a proof of the Pythagorean Theorem and its converse (prove perpendicular sides or right triangle). •I can apply the Pythagorean Theorem in real-world situations or drawings to find unknown side lengths in right triangles in two and three dimensions. •I can use the Pythagorean Theorem to find the distance between two points on a coordinate system. Or the Pythagorean theorem Finish? Work on practice handout from yesterday with partner

Pythagorean Theorem Word Problems & distance formula practice •I can solve equations of the form x2 = p and x3 = p using square or cube roots. •I can give or explain a proof of the Pythagorean Theorem and its converse (prove perpendicular sides or right triangle). •I can apply the Pythagorean Theorem in real-world situations or drawings to find unknown side lengths in right triangles in two and three dimensions. •I can use the Pythagorean Theorem to find the distance between two points on a coordinate system. Pythagorean Theorem Word Problems & distance formula practice Draw a pic Label Identify (legs & hypotenuse) Use formula and solve

•I can solve equations of the form x2 = p and x3 = p using square or cube roots. •I can give or explain a proof of the Pythagorean Theorem and its converse (prove perpendicular sides or right triangle). •I can apply the Pythagorean Theorem in real-world situations or drawings to find unknown side lengths in right triangles in two and three dimensions. •I can use the Pythagorean Theorem to find the distance between two points on a coordinate system. TOD: Sue left her house traveling due west towards the store. After 28 yards she traveled due north 45 yards to the store. When she left the store she cut across the field and traveled along a straight path. How much shorter was the path Sue took home than the path she took to the store?