INSTITUT DE RECERCA EN VISIÓ PER COMPUTADOR I ROBÒTICA – vicorob. udg

Slides:



Advertisements
Similar presentations
Rich feature Hierarchies for Accurate object detection and semantic segmentation Ross Girshick, Jeff Donahue, Trevor Darrell, Jitandra Malik (UC Berkeley)
Advertisements

Face Recognition: A Convolutional Neural Network Approach
Lecture 5: CNN: Regularization
ImageNet Classification with Deep Convolutional Neural Networks
Learning Convolutional Feature Hierarchies for Visual Recognition
Convolutional Neural Networks for Image Processing with Applications in Mobile Robotics By, Sruthi Moola.
Presented by: Kamakhaya Argulewar Guided by: Prof. Shweta V. Jain
VICOROB Research group at the Universitat de Girona VICOROB VIsió per COmputador i ROBòtica (Computer Vision and Robotics Group) Institut d'Informàtica.
Deep Convolutional Nets
Feedforward semantic segmentation with zoom-out features
ImageNet Classification with Deep Convolutional Neural Networks Presenter: Weicong Chen.
Object Recognizing. Deep Learning Success in 2012 DeepNet and speech processing.
Convolutional Neural Networks for Direct Text Deblurring
Lecture 3b: CNN: Advanced Layers
Lecture 4b Data augmentation for CNN training
Facial Detection via Convolutional Neural Network Nathan Schneider.
Radboud University Medical Center, Nijmegen, Netherlands
Automatic Lung Cancer Diagnosis from CT Scans (Week 3)
Cancer Metastases Classification in Histological Whole Slide Images
Automatic Grading of Diabetic Retinopathy through Deep Learning
CS 4501: Introduction to Computer Vision Object Localization, Detection, Semantic Segmentation Connelly Barnes Some slides from Fei-Fei Li / Andrej Karpathy.
Demo.
Convolutional Neural Network
The Relationship between Deep Learning and Brain Function
Object Detection based on Segment Masks
Random Forests For Multiple Sclerosis Lesion Segmentation
Journal Club M Havaei, et al. Université de Sherbrooke, Canada
Data Mining, Neural Network and Genetic Programming
Computer Science and Engineering, Seoul National University
Lecture 5 Smaller Network: CNN
CAMELYON16 Challenge Matt Berseth, NLP Logix Jacksonville FL
Training Techniques for Deep Neural Networks
CS 698 | Current Topics in Data Science
CS 698 | Current Topics in Data Science
Urban Sound Classification with a Convolution Neural Network
R-CNN region By Ilia Iofedov 11/11/2018 BGU, DNN course 2016.
Introduction to Convolutional Neural Network (CNN/ConvNET)-insights from amateur George (Tian Zhou)
Human Activity Recognition Using Smartphone Sensor Data
A Convolutional Neural Network Cascade For Face Detection
Bird-species Recognition Using Convolutional Neural Network
Aoxiao Zhong Quanzheng Li Team HMS-MGH-CCDS
Figure 4. Testing minimal configurations with existing models for spatiotemporal recognition. (A-B) A binary classifier is trained to separate a positive.
Counting in Dense Crowds using Deep Learning
Convolutional Neural Networks
Object Classification through Deconvolutional Neural Networks
Object Classification through Deconvolutional Neural Networks
Very Deep Convolutional Networks for Large-Scale Image Recognition
Smart Robots, Drones, IoT
CSC 578 Neural Networks and Deep Learning
Visualizing and Understanding Convolutional Networks
Example of a simple deep network architecture.
Forward and Backward Max Pooling
Analysis of Trained CNN (Receptive Field & Weights of Network)
John H.L. Hansen & Taufiq Al Babba Hasan
RCNN, Fast-RCNN, Faster-RCNN
Mihir Patel and Nikhil Sardana
ImageNet Classification with Deep Convolutional Neural Networks
Heterogeneous convolutional neural networks for visual recognition
Face Recognition: A Convolutional Neural Network Approach
CIS 519 Recitation 11/15/18.
Department of Computer Science Ben-Gurion University of the Negev
Digital Filters.
Automatic Handwriting Generation
Image Processing and Multi-domain Translation
Debasis Bhattacharya, JD, DBA University of Hawaii Maui College
Example of a simple deep network architecture.
Example of training and deployment of deep convolutional neural networks. Example of training and deployment of deep convolutional neural networks. During.
CSC 578 Neural Networks and Deep Learning
Presented By: Firas Gerges (fg92)
Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images RachnaJain NikitaJainaAkshayAggarwal D.
Presentation transcript:

INSTITUT DE RECERCA EN VISIÓ PER COMPUTADOR I ROBÒTICA – vicorob. udg INSTITUT DE RECERCA EN VISIÓ PER COMPUTADOR I ROBÒTICA – vicorob.udg.edu MULTIPLE SCLEROSIS LESION DETECTION AND SEGMENTATION USING A CONVOLUTIONAL NEURAL NETWORK OF 3D PATCHES Sergi Valverde, Mariano Cabezas, Eloy Roura, Sandra González-Villà, Joaquim Salvi, Arnau Oliver and Xavier Lladó

CNN architecture (I) Input: preprocessed FLAIR, T1, T2 and PD modalities 15 x 15 x 15 x 4 input Convolutional 1: 32 x 7 x 7 x 7 Average pooling 1: size 2 and stride 2 Convolutional 2: 64 x 3 x 3 x 3 Average pooling 2: size 2 and stride 2 Dropout (t = 0.5) Fully connected layer: 256 units Soft-max layer: 2 units

CNN architecture (II) Electronical device has noise!

Training Train CNN1 Train CNN2 15 training images Balanced dataset All lesion voxels + same number of random sampled negatives Train CNN1 Test 15 training images Extract voxels incorrectly classified as lesions Balanced dataset All lesion voxels + same number of voxels incorrectly classified in CNN1 Train CNN2

Testing ✕ Test CNN1 Test CNN2 TEST image FLAIR, T1, T2, PD Binarize mask Apply a threshold on the multiplied probability mask ✕ FINAL SEGMENTATION TEST image FLAIR, T1, T2, PD Test CNN2 Filter out Remove regions with < 20 voxels

Qualitative results

INSTITUT DE RECERCA EN VISIÓ PER COMPUTADOR I ROBÒTICA – vicorob. udg INSTITUT DE RECERCA EN VISIÓ PER COMPUTADOR I ROBÒTICA – vicorob.udg.edu MULTIPLE SCLEROSIS LESION DETECTION AND SEGMENTATION USING A CONVOLUTIONAL NEURAL NETWORK OF 3D PATCHES Sergi Valverde, Mariano Cabezas, Eloy Roura, Sandra González-Villà, Joaquim Salvi, Arnau Oliver and Xavier Lladó