Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

Broadband Rotational Spectrum and Molecular Geometry of OC  AgI Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
New Applications of Broadband Rotational Spectroscopy Wednesday 18 th April 2012 ERC Starting Grant Presentation Nicholas R. Walker (Left) The CP-FTMW.
CP-FTMW Spectroscopy of Metal-containing Complexes Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon Max-Planck Advanced Study Group at the Center.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Ab Initio Calculations of the Ground Electronic States of the C 3 Ar and C 3 Ne Complexes Yi-Ren Chen, Yi-Jen Wang, and Yen-Chu Hsu Institute of Atomic.
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Nicholas R. Walker, Susanna L. Stephens, David P. Tew and Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University,
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Daniel P. Zaleski, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. Evidence.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Daniel P. Zaleski, Hansjochen Köckert, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Microwave Spectra and Structure of CF 3 I···PH 3 by chirped-pulse spectroscopy in context of the CF 3 I···B and ClI···B series Susanna L. Stephens, Nick.
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Daniel P. Zaleski and Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. David P. Tew and Anthony.
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Nicholas R. Walker, David Hird, Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University, Broadband Rotational.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 S-AgCl Nicholas R. Walker, David Wheatley, Anthony C. Legon 64 th OSU International Symposium on.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
The Rotational Spectroscopy of SrS Kerry C. Etchison, Chris T. Dewberry and Stephen A. Cooke Department of Chemistry, University of North Texas P.O. Box.
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
pgopher in the Classroom and the Laboratory chm. bris
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Juliane Heitkämper, John C Mullaney, Nick Walker
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Analysis of bands of the 405 nm electronic transition of C3Ar
High-Resolution Infrared Spectrum of the  1 band of 5-C5H5NiNO
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
Department of Chemistry
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
Carlos Cabezas and Yasuki Endo
SUSANA BLANCO Departamento de Química Física y Química Inorgánica
A.J. Barclay, S. Sheybani-Deloui, N. Moazzen-Ahmadi
Aimee Bell, Omar Mahassneh, James Singer,
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb
Becca Mackenzie Chris Dewberry, Ken Leopold
Microwave Measurements of Cyclopropanecarboxylic Acid and its Doubly Hydrogen Bonded Dimer with Formic Acid Aaron M. Pejlovas, Kexin Li, Dr. Stephen G.
Department of Chemistry
Microwave spectra of Ar...AgI and H2O...AgI produced by laser ablation
Rotational Spectra of H2S Dimer: Observation of Ka =1 Lines
Bob Grimminger and Dennis Clouthier
Microwave spectra of 1- and 2-bromobutane
Mahdi Kamaee and Jennifer van Wijngaarden
THE STRUCTURE OF PHENYLGLYCINOL
Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick
The rotational spectrum of the urea isocyanic acid complex
Fourier Transform Microwave Spectroscopy Of Sc13C2 and Sc12C13C: Establishing an Accurate Structure Of ScC2 (X2A1) ~ Sc C Mark A. Burton, DeWayne T. Halfen,
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
John Mullaney Newcastle University
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
MICROWAVE SPECTRA, MOLECULAR STRUCTURE AND AROMATIC CHARACTER OF BN-NAPHTHALENE (4A,8A-AZABORANAPHTHALENE) AARON M. PEJLOVAS, STEPHEN G. KUKOLICH, University.
Presentation transcript:

Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl 1 Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl by Nicholas R. Walker, Susanna L. Stephens, Victor A. Mikhailov and Anthony C. Legon Rod rotator Laser arm Gas line attached to solenoid valve Microwave emission antenna

Objectives Apply microwave spectroscopy to study interactions of the broadest significance in inorganic chemistry. Examples include complexes formed between CO, H2S, N2, H2O, NH3 and the noble metal atoms Cu and Ag. Establish laser ablation as a general method for the production of metal-ligand complexes for study by microwave spectroscopy. Compare units such as H4C2CuCl, H4C2AgCl with hydrogen-bonded analogues, e.g. H4C2HCl, to identify common trends. Previous works include studies of OCMX by Gerry and co-workers. Also N2MX and H2SMX by Walker, Legon and co-workers.

Balle-Flygare FTMW spectrometer Rod rotater Laser arm 532 nm Nd:YAG laser Focusing lens Solenoid valve Adiabatic expansion of CCl4 / C2H4 / Ar Gas line Copper or silver rod and rod rotater Connections to microwave emission and detection circuits Fixed mirror To vacuum Adjustable mirror

H4C2CuCl and H4C2AgCl X Asymmetric tops of C2v symmetry. Dipole moment on a axis, Expect a-type transitions. Determine B0, C0, and possibly A0? Sensitive to rMCl, rMX and maybe rCC. M

H4C2AgCl F′-F′′ = Frequency / MHz JK-1 K+1 JK-1 K+1 = 313  414 Silver rod, natural isotope abundances. 3000 averaging cycles Isotopically-enriched 107Ag rod. 3000 averaging cycles Frequency / MHz

H4C263Cu35Cl Frequency / MHz F′′-F′ = JK-1 K+1 JK-1 K+1 = 202  303 F′′-F′ = , 23 , 45 , 56 1000 averaging cycles Frequency / MHz

H4C2AgCl Spectroscopic constant 12C2H4107Ag35Cl 12C2H4109Ag35Cl 12C2H4107Ag37Cl 12C2H4109Ag37Cl A0/ MHz 24301(47)a,b 24427(33) 24236(57) 24329(62) B0/MHz 1602.15391(34) 1602.04542(24) 1556.60563(31) 1556.44731(39) C0/MHz 1533.53207(34) 1533.43255(24) 1491.74602(31) 1491.59972(39) ΔJ/kHz 0.2198(84) 0.2295(64) 0.191(11) 0.202(11) ΔJK/kHz 13.59(41) 12.33(29) 13.75(48) 12.84(39) χaa(Cl)/MHz 27.856(25) 27.850(18) 22.026(28) 21.962(29) { χbb(Cl) χcc(Cl)}/MHz 2.75(10) 2.719(91) 1.91(12) 2.02(15) N 31 28 25 26 σr.m.s /kHz 2.7 1.8 2.3 3.0 Pb / u Å2 17.46(2) 17.40(2) 17.48(2) 17.44(2) Pc / u Å2 3.34(2) 3.29(2) 3.37(2) 3.33(2) a Numbers in parentheses are one standard deviation in units of the last significant figure. b The C0 rotational constant of 12C2H4 is 24824.20 MHz.

Dihedral angle(AgCCH) (94.51)c 6 isotopologues Distances and angles rs-geometry r0-geometry r(XAg)/Ǻ 2.1697(4)a 2.1719(9) r(Ag–Cl)/Ǻ 2.2701(2) 2.2724(8) r(C–C)/Ǻ 1.354(40) 1.3518(4) r(C–H)/Ǻ  (1.0853)b Angle(CCH) /deg. 123.02(6) Dihedral angle(AgCCH) (94.51)c 6 isotopologues X r0 Geometrya,b of isolated C2H4 rCC= 1.3386(14) Å rCH= 1.0849(13) Å CCH=121.16(11) a) N. C. Craig, P. Gröner and D. C. McKean, J. Phys. Chem. A 110, 7461-7469 (2006). b) T. C. Tan, K. I. Goh, P. P. Ong and H. H. Tro, J Mol. Spectrosc. 307, 189-192 (2001). r0 bond length of AgCl= 2.2836 Å; K. D. Hensel, C. Styger, W. Jäeger, A.J. Merer and M.C.L. Gerry; J. Chem. Phys. 99, 3320 (1993). a Small rs coordinate for silver calculated using the first moment condition. b Assumed from ab initio value corrected for the difference between re and r0 for C2H4. cAssumed unchanged from ab initio re value.

H4C2CuCl Spectroscopic constant 12C2H463Cu35Cl 12C2H465Cu35Cl 12C2H463Cu37Cl A0/ MHz 24076(42) 24076* B0 / MHz 1988.92787(30) 1988.625649(28) 1933.68868(20) C0 / MHz 1882.69407(30) 1882.41064(28) 1833.15068(20 ΔJ / kHz 0.281(26) 0.281* ΔJK / kHz 18.89(63) 18.89* χaa(Cu) / MHz 63.8102(76) 59.046(30) 63.8125(39) { χbb(Cu) χcc(Cu)}/MHz 44.55(28) 41.15* 44.54* χaa(Cl) /MHz 20.9974(95) 20.9906(88) 16.5534(52) { χbb(Cl) χcc(Cl)} /MHz 5.657(55) 5.659* 4.46* (Cbb + Ccc) / kHz 12.38(77) 13.58(45) 12.38 N 56 13 24 σr.m.s / kHz 3.5 1.0 1.3 a Numbers in parentheses are one standard deviation in units of the last significant figure. b The C0 rotational constant of 12C2H4 is 24824.20 MHz; N. C. Craig, P. Gröner and D. C. McKean, J. Phys. Chem. A 110, 7461-7469 (2006).

Nuclear Quadrupole Coupling Constants / MHz Ionicity, ic M=Cu M=Ag MCla 16.2 32.1 36.4 0.71 0.67 ArMCla 33.2 28.0 34.5 0.74 0.69 KrMCla 36.5 27.3 33.8 0.75 H2OMClb 50.3 25.5 32.3 0.77 H3NMClb  29.8 0.73 H2SMClc 61.8 23.0 29.4 0.79 OCMClb 70.8 21.5 28.1 0.80 H4C2MCl 63.8 21.0 27.9 0.81 NaCld 5.7 0.95 ArNaCld 5.8 Intense signals. Nuclear quadrupole coupling constants and force constants (calculated from (B0+C0)/2 and DJ) indicate strong interactions between the metal and C2H4.

Theory Dr. David Tew, University of Bristol CCSD(T) calculations. H2OAgCl rAgCl / Å rAgO / Å  / ˚ cc-pVTZa 2.280 45.0 cc-pVQZb 2.272 2.209 43.7 r0 2.273(6) 2.198(10) 37.4(16) H3NAgCl rAgN / Å AgNH cc-pVTZ 2.2783 2.1619 111.87 cc-pVQZ 2.2714 2.1530 111.68 2.26333(6) 2.15444(6) 113.48(2) H2SAgCl rAgS / Å 2.2835 2.4049 76.2 2.2777 2.3875 2.26882(13) 2.38384(12) 78.052(6) H4C2AgCl rAgX / Å CCH 2.2837 2.1975 121.46 2.2771 2.1945 2.2724(8) 2.1719(9) 123.02(6) Dr. David Tew, University of Bristol CCSD(T) calculations. cc-pVTZ basis sets for H, O. cc-pV(T+d)Z basis set for Cl. cc-pVTZ-PP for Ag.

Engineering and Physical Sciences Research Council Acknowledgments and Advertisements Susanna L. Stephens Colin M. Western – for adapting and developing PGOPHER for microwave spectroscopy. Anthony C. Legon Victor A. Mikhailov <http://pgopher.chm.bris.ac.uk/> Theory David P. Tew Jeremy N. Harvey MH02, now follows – CP-FTMW Spectroscopy of CF3ICO, Susanna Stephens. WH04, (Wed. 2:21) – Microwave Spectrum and Structure of H2O AgF, Susanna Stephens. WH05, (Wed. 2.38) – Internal Rotation in CF3INH3 and CF3IN(CH3)3 Probed by CP-FTMW Spectroscopy , Nick Walker. Financial Support Engineering and Physical Sciences Research Council