Portfolio theory Lecture 7.

Slides:



Advertisements
Similar presentations
Fi8000 Valuation of Financial Assets Spring Semester 2010 Dr. Isabel Tkatch Assistant Professor of Finance.
Advertisements

Diversification and Risky Asset Allocation
Fi8000 Optimal Risky Portfolios Milind Shrikhande.
Contemporary Investments: Chapter 17 Chapter 17 RISK AND DIVERSIFICATION What is risk aversion, and why are investors, as a group, risk averse? What are.
Chapter 8 Portfolio Selection.
© K. Cuthbertson and D. Nitzsche Figures for Chapter 10 PORTFOLIO THEORY AND ASSET RETURNS (Investments : Spot and Derivatives Markets)
Today Risk and Return Reading Portfolio Theory
INVESTMENTS | BODIE, KANE, MARCUS ©2011 The McGraw-Hill Companies CHAPTER 7 Optimal Risky Portfolios 1.
Mutual Investment Club of Cornell Week 8: Portfolio Theory April 7 th, 2011.
Efficient Frontier Capital Market Line Security Market Line
Why use single index model? (Instead of projecting full matrix of covariances) 1.Less information requirements 2.It fits better!
Basics of Portfolio Selection Theory  Exercise 1 University of Hohenheim Chair of Banking and Financial Services Portfolio Management Summer Term 2011.
Chapter 6 An Introduction to Portfolio Management.
Risk and Return - Part 2 Efficient Frontier Capital Market Line Security Market Line.
Optimal Risky Portfolios
Asset Management Lecture 11.
1 Limits to Diversification Assume w i =1/N,  i 2 =  2 and  ij = C  p 2 =N(1/N) 2  2 + (1/N) 2 C(N 2 - N)  p 2 =(1/N)  2 + C - (1/N)C as N  
Portfolio Theory & Capital Asset Pricing Model
1 PORTFOLIO How should you invest your money? What ’ s the best investment portfolio? How do you maximize your return without losing money?
FIN638 Vicentiu Covrig 1 Portfolio management. FIN638 Vicentiu Covrig 2 How Finance is organized Corporate finance Investments International Finance Financial.
Portfolio Theory and the Capital Asset Pricing Model 723g28 Linköpings Universitet, IEI 1.
Table 5-1 The expected Return and Standard Deviation of a Portfolio of Colonel Motors and Separated Edison When r = +1 Elton, Gruber, Brown, and Goetzman:
Risk Premiums and Risk Aversion
Diversification and Portfolio Risk Asset Allocation With Two Risky Assets 6-1.
The Capital Asset Pricing Model (CAPM)
Portfolio Management-Learning Objective
Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter 7.
Investment Analysis and Portfolio Management Chapter 7.
Chapter 5 Portfolios, Efficiency and the Capital Asset Pricing Model The objectives of this chapter are to enable you to: Understand the process of combining.
0 Portfolio Managment Albert Lee Chun Construction of Portfolios: Introduction to Modern Portfolio Theory Lecture 3 16 Sept 2008.
McGraw-Hill/Irwin Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 7 Capital Allocation Between The Risky And The Risk-Free.
ASSET PRICING FACULTY F MATHEMATICS BELGRADE 2010.
7- 1 © ADMN 3116, Anton Miglo ADMN 3116: Financial Management 1 Lecture 7: Portfolio selection Anton Miglo Fall 2014.
The Arbitrage Pricing Model Lecture XXVI. A Single Factor Model  Abstracting away from the specific form of the CAPM model, we posit a single factor.
Investing 101 Lecture 4 Basic Portfolio Building.
McGraw-Hill/Irwin © 2007 The McGraw-Hill Companies, Inc., All Rights Reserved. Capital Asset Pricing and Arbitrage Pricing Theory CHAPTER 7.
Economics 434 Financial Markets Professor Burton University of Virginia Fall 2015 September 15, 17, 2015.
Investment and portfolio management MGT 531. Investment and portfolio management  MGT 531.
Optimal portfolios and index model.  Suppose your portfolio has only 1 stock, how many sources of risk can affect your portfolio? ◦ Uncertainty at the.
PORTFOLIO OPTIMISATION. AGENDA Introduction Theoretical contribution Perceived role of Real estate in the Mixed-asset Portfolio Methodology Results Sensitivity.
Presentation 2: Objectives  To introduce you with the Principles of Investment Strategy and Modern Portfolio Theory  Topics to be covered  Indifference.
MSc COURSE : ASSET PRICING AND PORTFOLIO THEORY. Aims Introduce basic concepts used to price financial assets Introduce basic concepts used to price financial.
Utility Theory Investors maximize Expected Utility U = f(W) U(W) W Risk Averse Investor.
Stodder, Efficient Frontier Portfolio Optimization – Finding the Efficient Frontier Theory, and a Practical Example.
Managing Portfolios: Theory
1 CHAPTER THREE: Portfolio Theory, Fund Separation and CAPM.
Chapter 6 Efficient Diversification 1. Risk and Return Risk and Return In previous chapters, we have calculated returns on various investments. In chapter.
Markowitz Model 1.  It assists in the selection of the most efficient by analyzing various possible portfolios of the given securities. By choosing securities.
Bodie Kane Marcus Perrakis RyanINVESTMENTS, Fourth Canadian Edition Copyright © McGraw-Hill Ryerson Limited, 2003 Slide 6-1 Chapter 6.
1 EXAMPLE: PORTFOLIO RISK & RETURN. 2 PORTFOLIO RISK.
Class Business Debate #2 Upcoming Groupwork – Spreadsheet Spreadsheet.
David KilgourLecture 11 Foundations of Finance Lecture 1 Portfolio Theory Read: Brealey and Myers Chapter 8.
Portfolio Diversification Modern Portfolio Theory.
Expected Return and Variance
Return and Risk Lecture 2 Calculation of Covariance
Optimal Risky Portfolios
&2.1 Trading off Expected return and risk
Fi8000 Valuation of Financial Assets
Investment Analysis and Portfolio management
Portfolio Theory & Related Topics
The Markowitz’s Mean-Variance model
Optimal Risky Portfolios
Portfolio Selection 8/28/2018 Dr.P.S DoMS, SAPM V unit.
Portfolio Selection Chapter 8
Mean-Swap Variance,Portfolio Theory and Asset Pricing
Financial Market Theory
Asset Pricing Models Chapter 9
2. Building efficient portfolios
Financial Market Theory
Optimal Risky Portfolios
Presentation transcript:

Portfolio theory Lecture 7

Risk, returns, preferences and opportunities Suppose we have 3 assets Assets Expected return Volatility A 10% 8% B 14% 7% C 4%

Comparison of the assets Prefer B over A Prefer C over A E(r) B C A δ Portfolio theory is about maximizing return and minimizing the risk

Portfolio of 2 assets A&B E(r)B> E(r)A Volatility of A > Volatility of B Volatility of Portfolio = 𝐴 2 ×𝜎 𝐴 2 + 𝐵 2 ×𝜎 𝐵 2 +2×𝐴×𝐵× 𝜎 𝐴 × 𝜎 𝐵 × 𝜌 𝐴𝐵 If 𝜌 𝐴𝐵 =+1, Volatility of Portfolio =A× 𝜎 𝐴 +𝐵× 𝜎 𝐵

If 𝜌 𝐴𝐵 =+1 Volatility of Portfolio =A× 𝜎 𝐴 +𝐵× 𝜎 𝐵 Feasible set is a red line, changing the proportion of A and B will move us along the line E(r) B A δ

If 𝜌 𝐴𝐵 =-1 Volatility of Portfolio =± A× 𝜎 𝐴 −𝐵× 𝜎 𝐵 ≥0 Let 𝜎 𝑃 =0, A/B = 𝜎 𝐵 /𝜎 𝐴 E(r) B A δ

If 𝜌 𝐴𝐵 =0 Volatility of Portfolio = 𝐴 2 ×𝜎 𝐴 2 + 𝐵 2 ×𝜎 𝐵 2 <A× 𝜎 𝐴 +𝐵× 𝜎 𝐵 E(r) B A δ

What happens if we have more than 2 assets in a portfolio? Let N ≥ 3 E(r) Efficient frontier Minimum variance portfolio Mean variance frontier δ

Efficient frontier is a modern portfolio theory tool that shows investors the best possible return they can expect from their portfolio, given the level of volatility they are willing to accept.