Relations and Functions

Slides:



Advertisements
Similar presentations
Relations and Functions
Advertisements

Relations and Functions
Objectives Identify the domain and range of relations and functions.
Warm Up Use the graph for Problems 1–2.
1.6 Functions. A relation is a pairing of input values with output values. It can be shown as a set of ordered pairs (x,y), where x is an input and y.
Relations and Functions
Relations and Functions
Objectives Identify the domain and range of relations and functions.
Algebra Relations and Functions
1.6 Relations and Functions. Warm Up Use the graph for Problems 1–2. 1. List the x-coordinates of the points. 2. List the y-coordinates of the points.
Objectives Vocabulary Identify functions.
Chapter 1 - Foundations for Functions
1-6 Relations and Functions Holt Algebra 2. Warm Up Use the graph for Problems 1–2. 1. List the x-coordinates of the points. 2. List the y-coordinates.
Warm Up Use the graph for Problems 1–2. 1. List the x-coordinates of the points. 2. List the y-coordinates of the points. –2, 0, 3, 5 3, 4, 1, 0.
Holt McDougal Algebra Relations and Functions Warm Up Generate ordered pairs for the function y = x + 3 for x = –2, –1, 0, 1, and 2. Graph the ordered.
Relations and Functions
Holt McDougal Algebra Relations and Functions 3-2 Relations and Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation.
Holt Algebra Relations and Functions 4-2 Relations and Functions Holt Algebra 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Holt CA Course Functions Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
State the domain and range of each relation. Unit 3, Lesson 2 Mrs. King.
Lesson 31 Relations and Functions NCSCOS Obj.: 2.01 Daily Objectives TLW identify the domain and range of a relation. TLW show relations as sets and mappings.
3.2 Relations And Functions. A relation is a set of ordered pairs. {(2,3), (-1,5), (4,-2), (9,9), (0,-6)} This is a relation The domain is the set of.
Goal: Identify and graph functions..  Relation: mapping or pairing, of input values with output values.  Domain: Set of input values.  Range: set of.
Simplify : Solve & graph: and _____________________ or _____________________.
Holt McDougal Algebra 1 Relations and Functions GSE Algebra 1 Unit 2B D1 Identifying Functions Essential Questions How can I identify functions from various.
Algebra 2 June 18, 2016 Goals:   Identify functions in coordinate, table, or graph form   Determine domain and range of given functions.
Holt Algebra Relations and Functions Warm Up 1. Express the relation {(1,5), (2, 3), (3,2), (4,1)} as a table, as a graph, and as a mapping diagram.
Chapter 8.1 vocabulary Relation Is a pairing of numbers or a set of ordered pair {(2,1) (3,5) (6, 3)} Domain: first set of numbers Range: Second set of.
Warm Up Use the graph for Problems 1–2.
Relations and Functions
Relations and Functions
Graphing Relationships
Relations and Functions
Relations and Functions
Relations and Functions
2-1 Relations and Functions
Relations and Functions
2-1 Relations and Functions
Algebra 2 September 16, 2018 Goals:
EXAMPLE 1 Represent relations
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
8th Grade Math Presented by Mr. Laws
1.6 Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Stand Quietly.
Warm-Up 1) Write the Now-Next equation for each sequence of numbers. Then find the 10th term of the sequence. a) – 3, 5, 13, 21, … b) 2, – 12, 72, – 432,
2.1: Represent Relations and Functions HW: p.76 (4-20 even, all)
Relations for functions.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
Unit 3 Day 4.
Relations and Functions
Dependent Axis Y Answer Output Range f (x) Function Notation
Relation (a set of ordered pairs)
Warm Up Generate ordered pairs for the function
Relations and Functions
2-1 Relations & Functions
Presentation transcript:

Relations and Functions 1-6 Relations and Functions Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 2

Warm Up Use the graph for Problems 1–2. 1. List the x-coordinates of the points. 2. List the y-coordinates of the points. –2, 0, 3, 5 3, 4, 1, 0

Objectives Identify the domain and range of relations and functions. Determine whether a relation is a function.

Vocabulary relation domain range function

A relation is a pairing of input values with output values A relation is a pairing of input values with output values. It can be shown as a set of ordered pairs (x,y), where x is an input and y is an output. The set of input values for a relation is called the domain, and the set of output values is called the range.

Mapping Diagram Domain Range A 2 B C Set of Ordered Pairs {(2, A), (2, B), (2, C)} (x, y) (input, output) (domain, range)

Example 1: Identifying Domain and Range Give the domain and range for this relation: {(100,5), (120,5), (140,6), (160,6), (180,12)}. List the set of ordered pairs: {(100, 5), (120, 5), (140, 6), (160, 6), (180, 12)} Domain: {100, 120, 140, 160, 180} The set of x-coordinates. Range: {5, 6, 12} The set of y-coordinates.

Give the domain and range for the relation shown in the graph. Check It Out! Example 1 Give the domain and range for the relation shown in the graph. List the set of ordered pairs: {(–2, 2), (–1, 1), (0, 0), (1, –1), (2, –2), (3, –3)} Domain: {–2, –1, 0, 1, 2, 3} The set of x-coordinates. Range: {–3, –2, –1, 0, 1, 2} The set of y-coordinates.

Although a single input in a function cannot be mapped to more than one output, two or more different inputs can be mapped to the same output.

Not a function: The relationship from number to letter is not a function because the domain value 2 is mapped to the range values A, B, and C. Function: The relationship from letter to number is a function because each letter in the domain is mapped to only one number in the range.

Example 2: Determining Whether a Relation is a Function Determine whether each relation is a function. A. from the items in a store to their prices on a certain date There is only one price for each different item on a certain date. The relation from items to price makes it a function. B. from types of fruits to their colors A fruit, such as an apple, from the domain would be associated with more than one color, such as red and green. The relation from types of fruits to their colors is not a function.

Check It Out! Example 2 Determine whether each relation is a function. A. There is only one price for each shoe size. The relation from shoe sizes to price makes is a function. B. from the number of items in a grocery cart to the total cost of the items in the cart The number items in a grocery cart would be associated with many different total costs of the items in the cart. The relation of the number of items in a grocery cart to the total cost of the items is not a function.

Every point on a vertical line has the same x-coordinate, so a vertical line cannot represent a function. If a vertical line passes through more than one point on the graph of a relation, the relation must have more than one point with the same x-coordinate. Therefore the relation is not a function.

Example 3A: Using the Vertical-Line Test Use the vertical-line test to determine whether the relation is a function. If not, identify two points a vertical line would pass through. This is a function. Any vertical line would pass through only one point on the graph.

Example 3B: Using the Vertical-Line Test Use the vertical-line test to determine whether the relation is a function. If not, identify two points a vertical line would pass through. This is not a function. A vertical line at x = 1 would pass through (1, 1) and (1, –2).

Check It Out! Example 3a Use the vertical-line test to determine whether the relation is a function. If not, identify two points a vertical line would pass through. This is a function. Any vertical line would pass through only one point on the graph.

Check It Out! Example 3a Use the vertical-line test to determine whether the relation is a function. If not, identify two points a vertical line would pass through. This is not a function. A vertical line at x = 1 would pass through (1, 2) and (1, –2).

Lesson Quiz: Part I 1. Give the domain and range for this relation: {(10, 5), (20, 5), (30, 5), (60, 100), (90, 100)}. Determine whether each relation is a function. 2. from each person in class to the number of pets he or she has 3. from city to zip code D: {10, 20, 30, 60, 90)} R: {5, 100} function not a function

Lesson Quiz: Part II Use the vertical-line test to determine whether the relation is a function. If not, identify two points a vertical line would pass through. 4. not a function; possible answer: (3, 2) and (3, –2)