Lecture 8 CSE 331 Sep 14, 2011.

Slides:



Advertisements
Similar presentations
Lecture 30 CSE 331 Nov 8, HW 7 due today Place Q1, Q2 and Q3 in separate piles I will not accept HWs after 1:15pm DO NOT FORGET TO WRITE DOWN YOUR.
Advertisements

CSE 421 Algorithms Richard Anderson Lecture 2. Announcements Office Hours –Richard Anderson, CSE 582 Monday, 10:00 – 11:00 Friday, 11:00 – 12:00 –Yiannis.
Lecture 4 CSE 331 Sep 9, Blog posts for lectures Starts from today See Sep 8 post on the blog.
Lecture 5 CSE 331 Sep 11, HW 1 out today Will be handed out at the END of the lecture Read the homework policy document carefully START EARLY! ©ehow.com.
Lecture 7 CSE 331 Sep 16, Feedback forms VOLUNTARY Last 5 mins of the lecture.
Lecture 24 CSE 331 Oct 30, Homework stuff Please turn in your HW 6 Graded HW 5 and HW 7 at the END of the lecture.
Lecture 8 CSE 331 Sep 18, Homeworks Hand in your HW 1 HW 2 and solutions to HW 1 out at the end of class Not naming your collaborators is same as.
Lecture 8 CSE 331 Sep 17, HW 1 due today Place Q1 and Q2 in separate piles I will not accept HWs after 1:15pm.
Lecture 6 CSE 331 Sep 10, Homeworks HW 1 posted online: see blog/piazza Pickup graded HW 0 in TA OHs.
CSCI-256 Data Structures & Algorithm Analysis Lecture Note: Some slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved. 4.
Lecture 3 CSE 331. Stable Matching Problem Problem Statement Algorithm Problem Definition Implementation Analysis.
Lecture 2 CSE 331. Day 1 Survey On UBlearns Day 1 Survey (talking points) Security MS PhD for research Building PC’s for 442 It’s ok to play games –
Lecture 5 CSE 331 Sep 11, Submit the form I’ll need confirmation in writing. No graded material will be handed back till I get this signed form.
CSE 331: Review. Main Steps in Algorithm Design Problem Statement Algorithm Real world problem Problem Definition Precise mathematical def “Implementation”
CSE 421 Algorithms Richard Anderson (for Anna Karlin) Winter 2006 Lecture 2.
Asymptotic Analysis CSE 331. Definition of Efficiency An algorithm is efficient if, when implemented, it runs quickly on real instances Implemented where?
CSCI 256 Data Structures and Algorithm Analysis Lecture 2 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
Lecture 33 CSE 331 Nov 20, HW 8 due today Place Q1, Q2 and Q3 in separate piles I will not accept HWs after 1:15pm Submit your HWs to the side of.
CSE 331: Review August 1, Main Steps in Algorithm Design Problem Statement Algorithm Real world problem Problem Definition Precise mathematical.
Stable Matching.
Lecture 4 CSE 331 Sep 7, 2016.
Lecture 5 CSE 331 Sep 8, 2017.
Lecture 6 CSE 331 Sep 9, 2013.
CSE 421: Introduction to Algorithms
Lecture 17 CSE 331 Oct 3, 2014.
Lecture 5 CSE 331 Sep 10, 2010.
Lecture 7 CSE 331 Sep 15, 2010.
Lecture 4 CSE 331 Sep 6, 2017.
Lecture 7 CSE 331 Sep 14, 2016.
Lecture 6 CSE 331 Sep 11, 2017.
Lecture 6 CSE 331 Sep 13, 2010.
Lecture 9 CSE 331 Sep 20, 2010.
Objective of This Course
S. Raskhodnikova; based on slides by K. Wayne
Lecture 8 CSE 331 Sep 12, 2014.
Lecture 9 CSE 331 Sep 18, 2017.
Lecture 7 CSE 331 Sep 13, 2017.
Lecture 9 CSE 331 Sep 19, 2012.
Lecture 2 CSE 331 Sep 1, 2011.
Lecture 5 CSE 331 Sep 6, 2013.
Lecture 5 CSE 331 Sep 7, 2012.
Lecture 19 CSE 331 Oct 8, 2014.
Lecture 33 CSE 331 Nov 14, 2014.
Lecture 33 CSE 331 Nov 15, 2013.
Lecture 8 CSE 331 Sep 16, 2016.
Lecture 7 CSE 331 Sep 13, 2011.
Lecture 9 CSE 331 Sep 19, 2016.
Lecture 10 CSE 331 Sep 21, 2011.
Lecture 12 CSE 331 Sep 27, 2010.
Richard Anderson Autumn 2016 Lecture 2
Lecture 8 CSE 331 Sep 15, 2017.
Lecture 10 CSE 331 Sep 21, 2012.
Lecture 36 CSE 331 Nov 30, 2012.
Lecture 6 CSE 331 Sep 12, 2011.
Lecture 8 CSE 331 Sep 15, 2011.
Lecture 9 CSE 331 Sep 15, 2014.
Lecture 9 CSE 331 Sep 20, 2010.
Lecture 5 CSE 331 Sep 5, 2014.
Lecture 6 CSE 331 Sep 12, 2016.
Richard Anderson Winter 2009 Lecture 2
Lecture 7 CSE 331 Sep 10, 2014.
Piyush Kumar (Lecture 3: Stable Marriage)
Lecture 5 CSE 331 Sep 9, 2011.
Lecture 9 CSE 331 Sep 19, 2011.
Lecture 7 CSE 331 Sep 11, 2013.
Lecture 5 CSE 331 Sep 9, 2016.
Richard Anderson Winter 2019 Lecture 2
Lecture 11 CSE 331 Sep 20, 2013.
Lecture 36 CSE 331 Nov 22, 2013.
Richard Anderson Autumn 2019 Lecture 2
Presentation transcript:

Lecture 8 CSE 331 Sep 14, 2011

HW 1 due today I will not accept HWs after 1:15pm Place Q1, Q2 and Q3 in separate piles I will not accept HWs after 1:15pm

Other HW related stuff HW 2 has been posted online: see blog/piazza Solutions to HW 1 at the END of the lecture

Rosh Hashanah on Monday Class, OH and recitation canceled

GS algo outputs a stable matching Last lecture, GS outputs a perfect matching S Lemma 2: S has no instability

Proof technique de jour Proof by contradiction Assume the negation of what you want to prove After some reasoning Source: 4simpsons.wordpress.com

Two obervations Obs 1: Once m is engaged he keeps getting engaged to “better” women Obs 2: If w proposes to m’ first and then to m (or never proposes to m) then she prefers m’ to m

HW 1 due today I will not accept HWs after 1:15pm Place Q1, Q2 and Q3 in separate piles I will not accept HWs after 1:15pm

Proof of Lemma 2 By contradiction w’ last proposed to m’ Assume there is an instability (m,w’) m w m prefers w’ to w w’ prefers m to m’ m’ w’

Contradiction by Case Analysis Depending on whether w’ had proposed to m or not Case 1: w’ never proposed to m w’ m By Obs 2 w’ prefers m’ to m Assumed w’ prefers m to m’ Source: 4simpsons.wordpress.com

Case 2: w’ had proposed to m Case 2.1: m had accepted w’ proposal m is finally engaged to w 4simpsons.wordpress.com Thus, m prefers w to w’ By Obs 1 Case 2.2: m had rejected w’ proposal m was engaged to w’’ (prefers w’’ to w’) By Obs 1 m is finally engaged to w (prefers w to w’’) By Obs 1 m prefers w to w’ 4simpsons.wordpress.com

Overall structure of case analysis Did w’ propose to m? Did m accept w’ proposal? 4simpsons.wordpress.com 4simpsons.wordpress.com 4simpsons.wordpress.com

Questions?

Extensions Fairness of the GS algorithm Different executions of the GS algorithm

Main Steps in Algorithm Design Problem Statement Problem Definition n! Algorithm “Implementation” Analysis Correctness Analysis

Definition of Efficiency An algorithm is efficient if, when implemented, it runs quickly on real instances Implemented where? Platform independent definition What are real instances? Worst-case Inputs N = 2n2 for SMP Efficient in terms of what? Input size N

Definition-II n! How much better? By a factor of 2? Analytically better than brute force How much better? By a factor of 2?

At most c.Nd steps (c>0, d>0 absolute constants) Definition-III Should scale with input size If N increases by a constant factor, so should the measure Polynomial running time At most c.Nd steps (c>0, d>0 absolute constants) Step: “primitive computational step”

More on polynomial time Problem centric tractability Can talk about problems that are not efficient!

Reading Assignments Sections 1.2, 2.1, 2.2 and 2.4 in [KT]

Asymptotic Analysis Travelling Salesman Problem (http://xkcd.com/399/)

Which one is better?

Now?

And now?

The actual run times n! 100n2 Asymptotic View n2

Asymptotic Notation ≤ is O with glasses ≥ is Ω with glasses