Fundamental bounds on stability of atomic clocks

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Optical clocks, present and future fundamental physics tests
Use of Kalman filters in time and frequency analysis John Davis 1st May 2011.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Centro Nacional de Metrología, CENAM, km 4.5 Carretera a los Cues, El Marques, Qro., J. Mauricio López R.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Heidelberg, 15 October 2005, Björn Hessmo, Laser-based precision spectroscopy and the optical frequency comb technique 1.
Matt Jones Precision Tests of Fundamental Physics using Strontium Clocks.
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
EFTF 2007, Geneva I Guéna et al. I 1 Experimental study of intermodulation effects in a continuous fountain J. Guéna 3, G. Dudle 1, P. Thomann 2 1 Federal.
Principles of Time Scales
Additional RF system issues: Amplifier linearization Reference Phase distribution Master Clock Anders J Johansson Lund University.
An algorithm for dynamic spectrum allocation in shadowing environment and with communication constraints Konstantinos Koufos Helsinki University of Technology.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
Bayesian parameter estimation in cosmology with Population Monte Carlo By Darell Moodley (UKZN) Supervisor: Prof. K Moodley (UKZN) SKA Postgraduate conference,
Des horloges atomiques pour LISA ? Pierre Lemonde Bureau National de Métrologie – SYRTE (UMR CNRS 8630) Observatoire de Paris, France Journées LISA-FRANCE.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
1 Fundamental Physics Tests using the LNE-SYRTE Clock Ensemble Rencontres de Moriond and GPhyS colloquium 2011 March 25 th 2011 La Thuile, Aosta valley,
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
CHAPTER 17 O PTIMAL D ESIGN FOR E XPERIMENTAL I NPUTS Organization of chapter in ISSO –Background Motivation Finite sample and asymptotic (continuous)
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
@ 15/7/2003 Tokyo Institute of Technology 1 Propagating beliefs in spin- glass models Yoshiyuki Kabashima Dept. of Compt. Intel. & Syst.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
A Study on Speaker Adaptation of Continuous Density HMM Parameters By Chin-Hui Lee, Chih-Heng Lin, and Biing-Hwang Juang Presented by: 陳亮宇 1990 ICASSP/IEEE.
Metrology and integrated optics Geoff Pryde Griffith University.
V.V. Emel’yanov, S.P. Kuznetsov, and N.M. Ryskin* Saratov State University, , Saratov, Russia * GENERATION OF HYPERBOLIC.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
Labwork 3.
Role of entanglement in extracting information on quantum processes
Where Are You? Children Adults.
CS479/679 Pattern Recognition Dr. George Bebis
Sub-Planck Structure and Weak Measurement
Maximally Multipartite Entangled States and Statistical Mechanics
Improving Measurement Precision with Weak Measurements
Statistical-Mechanical Approach to Probabilistic Image Processing -- Loopy Belief Propagation and Advanced Mean-Field Method -- Kazuyuki Tanaka and Noriko.
Measurement Science Science et étalons
Matrix Product States in Quantum Metrology
12. Principles of Parameter Estimation
Using Quantum Means to Understand and Estimate Relativistic Effects
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
It should be no surprise that the Schrödinger result exactly matches the Bohr result. Recall that Bohr was able to explain the spectrum of the H atom,
Generation of squeezed states using radiation pressure effects
Detector of “Schrödinger’s Cat” States of Light
Sampling Distributions
Quantum Engineering & Control
Quantum Optics and Macroscopic Quantum Measurement
Coupled atom-cavity system
The Grand Unified Theory of Quantum Metrology
The Grand Unified Theory of Quantum Metrology
Solving an estimation problem
Normal gravity field in relativistic geodesy
The loss function, the normal equation,
Mathematical Foundations of BME Reza Shadmehr
12. Principles of Parameter Estimation
by Justin G. Bohnet, Brian C. Sawyer, Joseph W. Britton, Michael L
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Jaynes-Cummings Hamiltonian
Presentation transcript:

Fundamental bounds on stability of atomic clocks R. Demkowicz-Dobrzański1, K .Chabuda1, K. Macieszczak1,2, M. Fraas3, Ian Leroux4 1Faculty of Physics, University of Warsaw, Poland 2 School of Mathematical Sciences, University of Nottingham, United Kingdom 3 Theoretische Physik, ETH Zurich, Switzerland 4 QUEST Institut, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

Optical lattice clocks (NIST, SYRTE, Tokyo), approaching: Best atomic clocks Cs atomic fountain clock (NIST) Al+ ion atomic clock (NIST) Measuring the age of the universe with 1s precision! Sensing elevation changes due to gravitational redshift with 1cm precision! (relativistic geodesy) Optical lattice clocks (NIST, SYRTE, Tokyo), approaching: Given a realistic noise model, what are the fundamental bounds on stability imposed solely by quantum mechanics?

Basic scheme of atomic clock operation microwave atomic clock crystal oscillator feedback correction microwave generator optical atomic clock

Ramsey interrogation Exactly the same as in the Mach-Zehnder Cs atomic fountain clock (NIST) Frequency difference estimation precision clock transition quantum projection noise

General quantum metrological scheme for frequency estimation general N atom (probe) state general measurement general estimator

General quantum metrological scheme for frequency estimation general N atom (probe) state general measurement general estimator

General quantum metrological scheme for frequency estimation general N atom (probe) state general measurement general estimator Quantum Fisher Information approach:

Frequency vs Phase estimation Larger t = Better precision? frequency prior distribution phase priori distribution Larger t = Better precision?

Frequency vs Phase estimation frequency prior distribution phase priori distribution ? Too long t makes frequency estimation ambiguous

Frequency vs Phase estimation frequency prior distribution phase priori distribution ? Too long t makes frequency estimation ambiguous Too long t increses decoherence effects

Why Quantum Fisher Information approach is not enough? Quantum Fisher Information approach well justified for „local sensing” Freedom in choosing time of evolution makes „local sensing” regime not well defined apriori Saturation of Cramer-Rao bound not always guranteed in a single shot In atomic clocks we are interested in stabilizing fluctuating frequnecy and not measuring unknown fixed frequency! Bayesian approach more justified

Optimal Quantum Bayesian frequency estimation prior distribution measurement estimator family of states average cost: atomic decoherence

Optimal Quantum Bayesian parameter estimation for variance cost function prior distribution measurement estimator family of states average cost: solution: atomic decoherence Helstrom, Quantum Detection and Estimation Theory, (1976) K. Macieszczak, M. Fraas, RDD, New J. Phys. 16, 113002 (2014)

Allan variance

Looking for the fundamental stability bound adaptiveness allowed!!! Given: LO noise, atomic decoherence, number of atoms Find: optimal states, interrogation times, measurements, feedbacks to minimize the Allan variance! The quantum Allan variance

Calculating the Quantum Allan Variance unitary frequency sensing atomic decoherence stochastic proces describing LO frequency fluctuations atomic decoherence Assume the input state is given:

Minimizing the Allan Variance Bayesian variance minimization: Complexity grows with the number Allowing for collective measurements, and arbitrary correction function we can solve the problem!!!

The Quantum Allan Variance uncorrected LO Allan variance Bayesian variance minimization: To find the optimal probe state apply iterative procedure: given input state find optimal measurement/feedback strategy given measurement/feedback strategy find optimal input state repeat

Results (single atom) entangling atoms at different interrogation steps simulations simplified model neglecting LO noise correlations Realistic noise model taken from Nat. Photonics 5 158–61 (2011) NIST, Yb clock

Summary and outlook Tell me your LO noise spectrum and the number of atoms and I will tell you your stability limits K. Macieszczak, M. Fraas, RDD, New J. Phys. 16, 113002 (2014) K. Chabuda, I. Leroux, RDD, arXiv:1601.01685 (2016)