NGSS Overview Bassett USD 2016-17.

Slides:



Advertisements
Similar presentations
Next Generation Science Standards Intro to NGSS.
Advertisements

New England Environmental Education Alliance Presentation Saturday, November 2, 2013 Environmental Education Makes the New National Science Standards Exciting!
An Introduction to The Next Generation Science Standards
A Framework for K-12 Science Education: Practices, Crosscutting Concepts and Core Ideas Board on Science Education July, 2012.
Development of New Science Standards:
Oregon State Board of Education October 2012
1 Welcome back!. Vision for Science Teaching and Learning 2 View free PDF from The National Academies Press at *Will also be posted.
Seeing the Destination So We Can Direct Others to It
Crosscutting Concepts and Disciplinary Core Ideas February24, 2012 Heidi Schweingruber Deputy Director, Board on Science Education, NRC/NAS.
Next Generation Science Standards Update Cheryl Kleckner Education Specialist.
Supporting the CCSS in the Science Classroom through the Science and Engineering Practices of the Next Generation Science Standards (NGSS) John Spiegel.
Literacy and the Next Generation Science Standards Kentucky Department of Education.
October 4, 2012 Kim Lott Utah State University
Common Core Mathematics, Common Core English/Language Arts, and Next Generation Science Standards. What’s the common thread?
Preparing for Public Review of the Next Generation Science Standards for Today’s Students and Tomorrow’s Workforce Developed by: Phil Lafontaine, Director.
Colleen Megowan-Romanowicz PhD American Modeling Teachers Association Arizona State University The Next Generation Science Standards: another preview.
What is STEM? What is STEM?
NGSS 101 Introducing the Next Generation Science Standards for
Overview and Updates. Outcomes  Discuss the development process of the NGSS  Provide information regarding the NGSS and relationship to CCSS.
Next Generation Science Standards Paula Messina San Jose State University Science Education Program & Geology Department Achieve, Inc; Washington D.C.
LIVE INTERACTIVE YOUR DESKTOP 1 Start recording—title slide—1 of 3 Introducing the Next Generation Science Standards Originally presented by:
1. Goals for the Day Be able to understand and use the structure of the NGSS Use NGSS standards to begin Quarter Plan design and lesson plan development.
NGSS and Climate Literacy A Discussion by the CLEAN Network.
Chris DeWald Science Instructional Coordinator Montana Office of Public Instruction.
Next Generation Science Standards Quick Overview Analysis: Performance Expectations related to Climate Change Modified from a presentation by Paula Messina.
Developing the Next Generation Science Standards.
Update for TN State Board of Education July 24, 2013 Next Generation Science Standards for Today’s Students and Tomorrow’s Workforce.
Welcome to NGSS Base Camp. Learning Targets 2 1.Understand the NGSS development process & timeline 2.Describe the 3 dimensional nature of a performance.
Next Generation Science Standards Eva Olafson Science Program Assistant.
Sustainability Education and the Next Generation Science Standards.
Planning for Next Generation Science Standards (NGSS) 1.
NGSS-Health Science August Connection to the Common Core.
Where we are and where we are headed 2013 SCIENCE WORKSHOP.
National Research Council Of the National Academies
Introduction to NGSS and what they mean to you Laura Henriques, CSULB, CSTA President This presentation is based on the work jointly developed for California’s.
NEXT GENERATION SCIENCE STANDARDS (NGSS) Millard E. Lightburn (Ph.D.) Science Supervisor Ms. Mary Tweedy and Ms. Keisha Kidd Curriculum Support Specialists.
Click to edit Master title style Overview of the NGSS Framework.
The Basics About NGSS
STEM is gathering Steam!!!
Kindergarten PE’s K-2 Grade band. PS2.A: Forces and MotionPS2.A: Forces and Motion (K-PS2-1, K-PS2-2) PS2.B: Types of InteractionsPS2.B: Types of Interactions.
1 Cathy Ezrailson, Ph.D. Associate Professor of Science Education, University of South Dakota.
Planning for Next Generation Science Standards (NGSS) 1 Lesley Merritt, Science Specialist STEM Center for Math & Science Education-University of Arkansas.
Integration of practices, crosscutting concepts, and core ideas. NGSS Architecture.
The case for scientific literacy? so pretty i never knew mars had a sun.
Science Education Collaborative.
A Vision for K-12 Science Education as Described in the Framework for K-12 Science Education and Next Generation Science Standards How is NGSS different.
Adapting Lessons to NGSS Nicole D. LaDue, Assistant Professor Department of Geology and Environmental Geosciences June 20, 2014.
Interpreting the KCAS-Science: Terry Rhodes KDE Science Instructional Specialist
Good Morning and Welcome NGSS KCAS for Science Overview Kevin Crump Science Instructional Specialist KDE
What does the framework mean to us? Presented by Mary Cerny KATS Kamp, Spring, 2012 All notes on all slides were cut and pasted from the Framework. All.
 Introduction to UT Science with Engineering Education Standards (SEEd) An Overview of Development, Research, and Outcomes Ricky Scott K-12 Science Specialist.
Nevada State Science Standards Revision: Why NGSS?
Next Generation Science Standards (NGSS) and Draft of New York State P-12 Science Learning Standards with a Focus on English Learners ELL Think Tank.
Carolyn A Hayes, Ed.D. NSTA President ( ) 1 Next Generation Science Standards.
Elementary Science Learning Academy CALIFORNIA STATE UNIVERSITY LONG BEACH.
Module 1: Overview of the Framework for K–12 Science Education
Board on Science Education Draft released 15 July 2011
NGSS 101 Introducing the Next Generation Science Standards for
Summer GeoSTEM Academy for Teachers
Key to Decoding NGSS NGSS = Next Generation Science Standards
Science Coordinators Meeting May 3, 2017
Science Coordinators Meeting May 3, 2017
Five Tools & Processes for NGSS
The Next Generation Science Standards
How would Nature____? An Introduction to Biomimicry
Next Generation Science Standards March 14, 2013
Next Generation Science Standards
Welcome! Please make a name tag
Maia Binding, SEPUP, Lawrence Hall of Science
NextGen STEM Teacher Preparation in WA State
Presentation transcript:

NGSS Overview Bassett USD 2016-17

Today’s Objectives: Understand the structure and content of the NGSS document Become familiar with the Science Framework and how it can help you plan instruction Resources Presentation from Stemscopes Planning time

The Importance of NGSS in the 21st Century

DEVELOPING THE STANDARDS Resources Instruction Curricula Assessments Teacher Development 2011 - 2013 July 2011 2013 - present

Why ngss?

KNOWLEDGE AND PRACTICE MUST BE INTERTWINED IN LEARNING EXPERIENCES NGSS Vision Learning as a developmental progression Engaging students in scientific investigations and argumentation to achieve deeper understanding of core science ideas Integrating the knowledge of scientific explanations and the practices needed to engage in scientific inquiry and engineering design KNOWLEDGE AND PRACTICE MUST BE INTERTWINED IN LEARNING EXPERIENCES

Conceptual Shifts in NGSS K-12 Science Education Should Reflect the Interconnected Nature of Science as it is Practiced and Experienced in the Real World. The Next Generation Science Standards are student performance expectations – NOT curriculum. The science concepts in the NGSS build coherently from K-12. The NGSS Focus on Deeper Understanding of Content as well as Application of Content. Science and Engineering are Integrated in the NGSS from K–12. The NGSS are designed to prepare students for college, career, and citizenship. The NGSS and Common Core State Standards (Mathematics and English Language Arts) are Aligned.

Integration of the Three Dimensions Disciplinary Core Ideas Science and Engineering Practices Crosscutting Concepts The practices are the processes of building and using the core ideas to make sense of the natural and designed world, and the cross cutting concepts hold the discipline together. 8 44 7

DISCIPLINARY CORE IDEAS Life Science Physical Science LS1: From Molecules to Organisms: Structures and Processes LS2: Ecosystems: Interactions, Energy, and Dynamics LS3: Heredity: Inheritance and Variation of Traits LS4: Biological Evolution: Unity and Diversity PS1: Matter and Its Interactions PS2: Motion and Stability: Forces and Interactions PS3: Energy PS4: Waves and Their Applications in Technologies for Information Transfer Earth & Space Science Engineering & Technology ESS1: Earth’s Place in the Universe ESS2: Earth’s Systems ESS3: Earth and Human Activity ETS1: Engineering Design ETS2: Links Among Engineering, Technology, Science, and Society

Engineering & Technology CORE AND COMPONENT IDEAS Life Science Earth & Space Science Physical Science Engineering & Technology  LS1: From Molecules to Organisms: Structures and Processes LS1.A: Structure and Function LS1.B: Growth and Development of Organisms LS1.C: Organization for Matter and Energy Flow in Organisms LS1.D: Information Processing   LS2: Ecosystems: Interactions, Energy, and Dynamics LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.C: Ecosystem Dynamics, Functioning, and Resilience LS2.D: Social Interactions and Group Behavior LS3: Heredity: Inheritance and Variation of Traits LS3.A: Inheritance of Traits LS3.B: Variation of Traits LS4: Biological Evolution: Unity and Diversity LS4.A: Evidence of Common Ancestry and Diversity LS4.B: Natural Selection LS4.C: Adaptation LS4.D: Biodiversity and Humans ESS1: Earth’s Place in the Universe ESS1.A: The Universe and Its Stars ESS1.B: Earth and the Solar System ESS1.C: The History of Planet Earth ESS2: Earth’s Systems ESS2.A: Earth Materials and Systems ESS2.B: Plate Tectonics and Large-Scale System Interactions ESS2.C: The Roles of Water in Earth’s Surface Processes ESS2.D: Weather and Climate ESS2.E: Biogeology ESS3: Earth and Human Activity ESS3.A: Natural Resources ESS3.B: Natural Hazards ESS3.C: Human Impacts on Earth Systems ESS3.D: Global Climate Change  PS1: Matter and Its Interactions PS1.A: Structure and Properties of Matter PS1.B: Chemical Reactions PS1.C: Nuclear Processes PS2: Motion and Stability: Forces and Interactions PS2.A: Forces and Motion PS2.B: Types of Interactions PS2.C: Stability and Instability in Physical Systems PS3: Energy PS3.A: Definitions of Energy PS3.B: Conservation of Energy and Energy Transfer PS3.C: Relationship Between Energy and Forces PS3.D: Energy in Chemical Processes and Everyday Life PS4: Waves and Their Applications in Technologies for Information Transfer PS4.A: Wave Properties PS4.B: Electromagnetic Radiation PS4.C: Information Technologies and Instrumentation  ETS1: Engineering Design ETS1.A: Defining and Delimiting an Engineering Problem ETS1.B: Developing Possible Solutions ETS1.C: Optimizing the Design Solution ETS2: Links Among Engineering, Technology, Science, and Society ETS2.A: Interdependence of Science, Engineering, and Technology ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World Note: In NGSS, the core ideas for Engineering, Technology, and the Application of Science are integrated with the Life Science, Earth & Space Science, and Physical Science core ideas

Scientific and Engineering Practices Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting data Using mathematics and computational thinking Developing explanations and designing solutions Engaging in argument Obtaining, evaluating, and communicating information

Crosscutting Concepts Patterns Cause and effect Scale, proportion, and quantity Systems and system models Energy and matter Structure and function Stability and change

INSIDE THE NGSS BOX Review how to read the NGSS by watching a tutorial: http://www.nextgenscience.org/resources/how-read-next-generation-science-standards Based on the January 2013 Draft of NGSS

Title and Code The titles of standard pages are not necessarily unique and may be reused at several different grade levels . The code, however, is a unique identifier for each set based on the grade level, content area, and topic it addresses. INSIDE THE NGSS BOX What is Assessed A collection of several performance expectations describing what students should be able to do to master this standard Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Connection Box Other standards in the Next Generation Science Standards or in the Common Core State Standards that are related to this standard Based on the January 2013 Draft of NGSS

INSIDE THE NGSS BOX Performance Expectations A statement that combines practices, core ideas, and crosscutting concepts together to describe how students can show what they have learned. Clarification Statement A statement that supplies examples or additional clarification to the performance expectation. What is Assessed A collection of several performance expectations describing what students should be able to do to master this standard Assessment Boundary A statement that provides guidance about the scope of the performance expectation at a particular grade level. Engineering Connection (*) An asterisk indicates an engineering connection in the practice, core idea or crosscutting concept that supports the performance expectation. Based on the January 2013 Draft of NGSS

INSIDE THE NGSS BOX Foundation Box Scientific & Engineering Practices Activities that scientists and engineers engage in to either understand the world or solve a problem Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Disciplinary Core Ideas Concepts in science and engineering that have broad importance within and across disciplines as well as relevance in people’s lives. Crosscutting Concepts Ideas, such as Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. Connections to Engineering, Technology and Applications of Science These connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework. Connections to Nature of Science Connections are listed in either the practices or the crosscutting connections section of the foundation box. Based on the January 2013 Draft of NGSS

INSIDE THE NGSS BOX Foundation Box Scientific & Engineering Practices Activities that scientists and engineers engage in to either understand the world or solve a problem Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Disciplinary Core Ideas Concepts in science and engineering that have broad importance within and across disciplines as well as relevance in people’s lives. Crosscutting Concepts Ideas, such as Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. Based on the January 2013 Draft of NGSS

INSIDE THE NGSS BOX Codes for Performance Expectations Codes designate the relevant performance expectation for an item in the foundation box and connection box. In the connections to common core, italics indicate a potential connection rather than a required prerequisite connection. Based on the January 2013 Draft of NGSS

INSIDE THE NGSS BOX Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Connections to Engineering, Technology and Applications of Science These connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework. Connections to Nature of Science Connections are listed in either the practices or the crosscutting connections section of the foundation box. Based on the January 2013 Draft of NGSS

INSIDE THE NGSS BOX Title and Code The titles of standard pages are not necessarily unique and may be reused at several different grade levels . The code, however, is a unique identifier for each set based on the grade level, content area, and topic it addresses. Performance Expectations A statement that combines practices, core ideas, and crosscutting concepts together to describe how students can show what they have learned. Clarification Statement A statement that supplies examples or additional clarification to the performance expectation. What is Assessed A collection of several performance expectations describing what students should be able to do to master this standard Assessment Boundary A statement that provides guidance about the scope of the performance expectation at a particular grade level. Engineering Connection (*) An asterisk indicates an engineering connection in the practice, core idea or crosscutting concept that supports the performance expectation. Scientific & Engineering Practices Activities that scientists and engineers engage in to either understand the world or solve a problem Foundation Box The practices, core disciplinary ideas, and crosscutting concepts from the Framework for K-12 Science Education that were used to form the performance expectations Disciplinary Core Ideas Concepts in science and engineering that have broad importance within and across disciplines as well as relevance in people’s lives. Crosscutting Concepts Ideas, such as Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. Connections to Engineering, Technology and Applications of Science These connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework. Connection Box Other standards in the Next Generation Science Standards or in the Common Core State Standards that are related to this standard Connections to Nature of Science Connections are listed in either the practices or the crosscutting connections section of the foundation box. Codes for Performance Expectations Codes designate the relevant performance expectation for an item in the foundation box and connection box. In the connections to common core, italics indicate a potential connection rather than a required prerequisite connection. Based on the January 2013 Draft of NGSS

Video tutorial for how to read the NGSS

A Closer Look at a Performance Expectation

A Closer Look at a Performance Expectation

A Closer Look at a Performance Expectation

A Closer Look at a Performance Expectation

What are the NGSS? NGSS Are: NGSS Are NOT: Performance Expectations focused on the interconnection of the three dimensions of science learning Performance Expectations that require students demonstrate proficiency Designed to lead to a coherent understanding of the Practices, CCC, and DCIs Separate sets of isolated inquiry and content standards Curriculum or instructional tasks, experiences or materials. Meant to limit the use of Practices or Crosscutting Concepts in instruction Designed to be separate or isolated experiences

Free at iOS App Store and Android Marketplace Google Play There’s an app for that! Free at iOS App Store and Android Marketplace Google Play

Online Resources: nextgenscience.org ngss.info learningcenter.nsta.org nsta.org/ngss achieve.org/next-generation- science-standards biologycorner.com/2013/02/24/ng ss-college-readiness/ californiaeei.org/abouteei/whatista ught/ nextgenscience.org ngss.info learningcenter.nsta.org