Using Inductive Reasoning to Make Conjectures 2-1

Slides:



Advertisements
Similar presentations
2.1 Inductive Reasoning Ojectives:
Advertisements

Using Inductive Reasoning to Make Conjectures 2-1
Do Now Try to extend the following patterns. What would be next? 1.January, March, May …. 2.7, 14, 21, 28, …. 3.1, 4, 9, 16, …. 4.1, 6, 4, 9, 7, 12, 10,
Lesson 2.1 Inductive Reasoning in Geometry
Objectives Students will…
Using Inductive Reasoning to Make Conjectures
Geometry Using Inductive reasoning to Make Conjectures
When several examples form a pattern and you assume the pattern will continue, you are applying inductive reasoning. Inductive reasoning is the process.
What is Critical Thinking?
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Using Inductive Reasoning to Make Conjectures 2-1
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
Using Inductive Reasoning to Make Conjectures 2-1
Patterns & Inductive Reasoning
Warm Up Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Find the next item in the pattern. Example 1A: Identifying a Pattern January,
1.2 Patterns and Inductive Reasoning. Ex. 1: Describing a Visual Pattern Sketch the next figure in the pattern
Holt Geometry 2-1 Using Inductive Reasoning to Make Conjectures Warm Up Boxed In Three boxes contain two coins each. One contains two nickels, one contains.
Chapter Using inductive reasoning to make conjectures.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Unit 01 – Lesson 08 – Inductive Reasoning Essential Question  How can you use reasoning to solve problems? Scholars will  Make conjectures based on inductive.
Entry Task Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the.
Reasoning, Conditionals, and Postulates Sections 2-1, 2-3, 2-5.
2.1 Inductive Reasoning Objectives: I CAN use patterns to make conjectures. disprove geometric conjectures using counterexamples. 1 Serra - Discovering.
Using Inductive Reasoning to Make Conjectures Geometry Farris 2015.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Use inductive reasoning to identify patterns and make conjectures. Find counterexamples.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures 2-1 Using Inductive Reasoning to Make Conjectures Holt Geometry Warm Up Warm Up.
Holt McDougal Geometry 2-1 Using Inductive Reasoning to Make Conjectures Toolbox Pg. 77 (11-15; 17-22; 24-27; 38 why 4 )
Lesson 1-7 Inductive Reasoning. Inductive Reasoning – making conclusions based on patterns you observe. Conjecture – conclusion you reach by inductive.
Conditional Statements
Warm Up 1.) Adds one more side to the polygon. 2.)
Jan 2016 Solar Lunar Data.
Conditional Statements
2.1 Inductive Reasoning Essential Question:
Conditional Statements
Using Inductive Reasoning to Make Conjectures 2-1
UNIT 2 Geometric Reasoning 2.1
Conditional Statements
02-2: Vocabulary inductive reasoning conjecture counterexample
OPENER.
Average Monthly Temperature and Rainfall
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Conditional Statements
Vocabulary inductive reasoning conjecture counterexample
2.1 Using Inductive Reasoning to Make Conjectures
Using Inductive Reasoning to Make Conjectures 2-1
Patterns and Inductive Reasoning
Drill 1, 3, 5, 7, 9, __, __ 2, 5, 8, 11, 14, __, __ -3, -6, -10, -15, __ , , , __ OBJ: SWBAT use inductive reasoning in order to identify.
Using Inductive Reasoning to Make Conjectures 2-1
Conditional Statements
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
Conditional Statements
Notes 2.1 Inductive Reasoning.
UNIT 2 Geometric Reasoning 2.1
Using Inductive Reasoning to Make Conjectures
Using Inductive Reasoning to Make Conjectures 2-1
Patterns and Inductive Reasoning
Patterns and Inductive Reasoning
Conditional Statements
Using Inductive Reasoning to Make Conjectures
Lesson 2.1 Use Inductive Reasoning
Using Inductive Reasoning to Make Conjectures 2-1
Using Inductive Reasoning to Make Conjectures 2-1
2-1 Inductive Reasoning and Conjecture
Conditional Statements
Presentation transcript:

Using Inductive Reasoning to Make Conjectures 2-1 Warm Up Lesson Presentation Lesson Quiz Holt Geometry

Complete each sentence. Warm Up Complete each sentence. 1. ? points are points that lie on the same line. 2. ? points are points that lie in the same plane. 3. The sum of the measures of two ? angles is 90°. Collinear Coplanar complementary

Objectives Use inductive reasoning to identify patterns and make conjectures. Find counterexamples to disprove conjectures.

Vocabulary inductive reasoning conjecture counterexample

Example 1A: Identifying a Pattern Find the next item in the pattern. January, March, May, ... Alternating months of the year make up the pattern. The next month is July.

Example 1B: Identifying a Pattern Find the next item in the pattern. 7, 14, 21, 28, … Multiples of 7 make up the pattern. The next multiple is 35.

Example 1C: Identifying a Pattern Find the next item in the pattern. In this pattern, the figure rotates 90° counter-clockwise each time. The next figure is .

Check It Out! Example 1 Find the next item in the pattern 0.4, 0.04, 0.004, … When reading the pattern from left to right, the next item in the pattern has one more zero after the decimal point. The next item would have 3 zeros after the decimal point, or 0.0004.

When several examples form a pattern and you assume the pattern will continue, you are applying inductive reasoning. Inductive reasoning is the process of reasoning that a rule or statement is true because specific cases are true. You may use inductive reasoning to draw a conclusion from a pattern. A statement you believe to be true based on inductive reasoning is called a conjecture.

Example 2A: Making a Conjecture Complete the conjecture. The sum of two positive numbers is ? . List some examples and look for a pattern. 1 + 1 = 2 3.14 + 0.01 = 3.15 3,900 + 1,000,017 = 1,003,917 The sum of two positive numbers is positive.

Example 2B: Making a Conjecture Complete the conjecture. The number of lines formed by 4 points, no three of which are collinear, is ? . Draw four points. Make sure no three points are collinear. Count the number of lines formed: The number of lines formed by four points, no three of which are collinear, is 6.

Check It Out! Example 2 Complete the conjecture. The product of two odd numbers is ? . List some examples and look for a pattern. 1  1 = 1 3  3 = 9 5  7 = 35 The product of two odd numbers is odd.

Example 3: Biology Application The cloud of water leaving a whale’s blowhole when it exhales is called its blow. A biologist observed blue-whale blows of 25 ft, 29 ft, 27 ft, and 24 ft. Another biologist recorded humpback-whale blows of 8 ft, 7 ft, 8 ft, and 9 ft. Make a conjecture based on the data. Heights of Whale Blows Height of Blue-whale Blows 25 29 27 24 Height of Humpback-whale Blows 8 7 9

Example 3: Biology Application Continued The smallest blue-whale blow (24 ft) is almost three times higher than the greatest humpback-whale blow (9 ft). Possible conjectures: The height of a blue whale’s blow is about three times greater than a humpback whale’s blow. The height of a blue-whale’s blow is greater than a humpback whale’s blow.

In 5 of the 6 pairs of numbers above the female is longer. Check It Out! Example 3 Make a conjecture about the lengths of male and female whales based on the data. Average Whale Lengths Length of Female (ft) 49 51 50 48 47 Length of Male (ft) 45 44 46 In 5 of the 6 pairs of numbers above the female is longer. Female whales are longer than male whales.

To show that a conjecture is always true, you must prove it. To show that a conjecture is false, you have to find only one example in which the conjecture is not true. This case is called a counterexample. A counterexample can be a drawing, a statement, or a number.

Inductive Reasoning 1. Look for a pattern. 2. Make a conjecture. 3. Prove the conjecture or find a counterexample.

Example 4A: Finding a Counterexample Show that the conjecture is false by finding a counterexample. For every integer n, n3 is positive. Pick integers and substitute them into the expression to see if the conjecture holds. Let n = 1. Since n3 = 1 and 1 > 0, the conjecture holds. Let n = –3. Since n3 = –27 and –27  0, the conjecture is false. n = –3 is a counterexample.

Example 4B: Finding a Counterexample Show that the conjecture is false by finding a counterexample. Two complementary angles are not congruent. 45° + 45° = 90° If the two congruent angles both measure 45°, the conjecture is false.

Monthly High Temperatures (ºF) in Abilene, Texas Example 4C: Finding a Counterexample Show that the conjecture is false by finding a counterexample. The monthly high temperature in Abilene is never below 90°F for two months in a row. Monthly High Temperatures (ºF) in Abilene, Texas Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 88 89 97 99 107 109 110 106 103 92 The monthly high temperatures in January and February were 88°F and 89°F, so the conjecture is false.

Show that the conjecture is false by finding a counterexample. Check It Out! Example 4a Show that the conjecture is false by finding a counterexample. For any real number x, x2 ≥ x. Let x = . 1 2 Since = , ≥ . 1 2 2 1 4 The conjecture is false.

Show that the conjecture is false by finding a counterexample. Check It Out! Example 4b Show that the conjecture is false by finding a counterexample. Supplementary angles are adjacent. 23° 157° The supplementary angles are not adjacent, so the conjecture is false.

Planets’ Diameters (km) Check It Out! Example 4c Show that the conjecture is false by finding a counterexample. The radius of every planet in the solar system is less than 50,000 km. Planets’ Diameters (km) Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune 4880 12,100 12,800 6790 143,000 121,000 51,100 49,500 Since the radius is half the diameter, the radius of Jupiter is 71,500 km and the radius of Saturn is 60,500 km. The conjecture is false.

Lesson Quiz Find the next item in each pattern. 1. 0.7, 0.07, 0.007, … 2. 0.0007 Determine if each conjecture is true. If false, give a counterexample. 3. The quotient of two negative numbers is a positive number. 4. Every prime number is odd. 5. Two supplementary angles are not congruent. 6. The square of an odd integer is odd. true false; 2 false; 90° and 90° true