Mirror thermal noises and its implications on the mirror design

Slides:



Advertisements
Similar presentations
Work Package 4: Development of low loss dielectric coatings for advanced detectors Scientific motivation: Mechanical dissipation from dielectric mirror.
Advertisements

Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
COATING RESEARCH & LMA G. Cagnoli, A. Cajfinger, V. Dolique, G. Cochez, R. Flaminio, D. Forest, J. Franc, M. Granata, C. Michel, N. Morgado,
Dublin/July'04 1 BLTS interferometers: Big, Low-temperature Transparent Silicon Interferometers Warren Johnson Louisiana State University LIGO-G Z.
Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Substrate mechanical loss studies Sheila Rowan (Stanford University) for: LIGO Laboratory (Caltech, MIT, LLO, LHO) LSC Partners (University of Glasgow,
Alban REMILLIEUX3 rd ILIAS-GW Annual General Meeting. London, October 26 th -27 th, New coatings on new substrates for low mechanical loss mirrors.
Thermal Noise from Coatings Gregg Harry; Andri Gretarsson, Scott Kittelberger, Steve Penn, Peter Saulson; Marty Fejer, Eric Gustafson, Roger Route, Sheila.
Nawrodt 05/2010 Thermal noise and material issues for ET Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Overview of coatings research and recent results at the University of Glasgow M. Abernathy, I. Martin, R. Bassiri, E. Chalkley, R. Nawrodt, M.M. Fejer,
Thermal noise from optical coatings Gregory Harry Massachusetts Institute of Technology - on behalf of the LIGO Science Collaboration - 25 July
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
LIGO Coating Project Gregory Harry LIGO/MIT - On Behalf of the Coating Working Group - LIGO/Virgo Thermal Noise Workshop October 7, 2006 Pisa, Italy LIGO-G R.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
The investigation of optical inhomogeneities of the multilayer mirrors progress report Moscow State University Bilenko I.A
DFG-NSF Astrophysics Workshop Jun 2007 G Z 1 Optics for Interferometers for Ground-based Detectors David Reitze Physics Department University.
Lisbon, 8 January Research and Development for Gravitational Wave Detectors Raffaele Flaminio CNRS/LMA Lyon.
Optical Coatings R&D Status Gregory Harry Massachusetts Institute of Technology - On Behalf of the Coating Working Group - August, 2004 LSC Meeting Hanford.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, H. Armandula 3, R. Bassiri 1, E. Chalkley 1 C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research, the University of Tokyo Cryogenic mirrors: the state of the art in interferometeric gravitational.
18 th - 22 nd May 2015 LIGO-G GWADW Alaska Suspension Upgrades for Enhanced Interferometers Giles Hammond (Institute for Gravitational Research,
Francesco Cottone INFN & Physics Departments of Perugia, Pisa, Florence (Collaboration Work under VIRGO Project) Thermomechanical properties of silicon.
ILIAS - GWA N5 - Strega JRA3 General Meeting Orsay - November 5th-6th, 2004 M1 Activities.
Virgo-Material “macro” group M.Punturo. VIRGO-MAT2 VIRGO-MAT components Virgo-MAT is composed by three INFN groups –Firenze/Urbino M.Lorenzini, G.Losurdo,
Experimental investigation of dynamic Photothermal Effect
Coating Program Update Gregory Harry LIGO/MIT on behalf of the Coating Working Group March 22, 2006 LSC Meeting – LHO G R.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Cryogenic Xylophone Kyoto May Kentaro Somiya Waseda Inst. for Adv. Study Collaboration work with S.Hild, K.Kokeyama, H.Mueller-Ebhardt, R.Nawrodt,
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
Aspen Flat Beam Profile to Depress Thermal Noise J.Agresti, R. DeSalvo LIGO-G Z.
111 Kazuhiro Yamamoto Institute for Cosmic Ray Research, the University of Tokyo Cryogenic interferometer technologies 19 May 2014 Gravitational Wave Advanced.
Some Ideas on Coatingless all-reflective ITF Adalberto Giazotto (*) INFN- Pisa (*) Work done in collaboration with G. Cella.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
LIGO-G R 1 Gregory Harry and COC Working Group Massachusetts Institute of Technology - Technical Plenary Session - March 17-20, 2003 LSC Meeting.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September Genoa 1 Investigation.
Optical Coatings for Gravitational Wave Detection Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration - August.
Design and Testing of a Silicon Suspension A. Cumming 1, G. Hammond 1, K. Haughian 1, J. Hough 1, I. Martin 1, R. Nawrodt 2, S. Rowan 1, C. Schwarz 2,
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
WP2-WP3 Joint Meeting - Jena - March 1-3, Several different mechanisms contribute to the thermal noise of the mirror: Brownian (BR)(substrate, coating)
Studies of materials to reduce coating thermal noise K. Craig 1, I.W. Martin 1, S. Reid 2, M. Abernathy 1, R. Bassiri 1,4, K. Borisenko 3, A. Cumming 1,
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, E. Chalkley 1, H. Armandula 3, R. Bassiri 1, C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Measurement of coating mechanical loss Junko Katayama, K.Craig, K.Yamamoto, M.Ohashi ICRR 0.
Ronny Nawrodt 1st ELiTES General Meeting Tokyo 04/10/2012 Silicon Surfaces – Silicon Loss and Silicon Treatments –
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
STREGA WP4 coating development GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
Ab Initio Property Prediction with Density Functional Theory (DFT) Relevant to Coating Thermal Noise Laser Interferometer Gravitational-Wave Observatory.
Overview of the 20K configuration
Pros and cons of cryogenics for Einstein Telescope and Cosmic Explorer
Optimization of thermal noise for ET-LF sensitivity
Cryogenic Si-Si Bond Strength Testing
Thermal noise calculations for cryogenic optics
Synopsis by Maria Ruiz-Gonzalez 12/8/16
Current status of coating research in Glasgow
Cryogenic Si-Si Bond Strength Testing
S. Rowan, M. Fejer, E. Gustafson, R. Route, G. Zeltzer
Greg Ogin, Eric Black, Eric Gustafson, Ken Libbrecht
Thermal noise reduction through LG modes
Overview of Advanced LIGO Coating Status
LIGO Scientific Collaboration
Main Efforts of the Core Optics WG
Thermal Noise Interferometer Update and Status
Sensitivity curves beyond the Advanced detectors
Presentation transcript:

Mirror thermal noises and its implications on the mirror design Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux Avancés-Lyon Ronny Nawrodt, Iain Martin, Liam Cunningham, Alan Cumming, Sheila Rowan, James Hough University of Glasgow WP2 meeting – ERICE – 15th OCTOBER 2009 Janyce Franc-WG2-Erice

Janyce Franc-WG2-Erice CONTENTS INTRODUCTION Objective and formula PARAMETERS AND SIMULATIONS @ 300K Different coatings Total thermal noise in a HR mirror PARAMETERS AND SIMULATIONS @ 10K Substrates studies Debate on the 18K temperature Study on limiting thermal noise PROPOSITION ET-NOTE ET-O21-O9 issue 2 Janyce Franc-WG2-Erice

Janyce Franc-WG2-Erice Sources of Thermal Noises Noises sources Spectral Density Brownian Coating Brownian Substrate Thermoelastic Coating Thermoelastic Substrate >>  c : possible adiabatic assumption  <  c : impossible adiab. Assump. Thermorefractive Coating THERMO-OPTIC NOISE (TE-TR compensation) Voir ce qu’on dit sur ce transparent avec RAF Janyce Franc-WG2-Erice

Janyce Franc-WG2-Erice Substrates parameters at 300K SiO2 Silicon Sapphire  5 10-9 10-8 2 10-9  (kg.m-3) 2200 2330 3980  (W.m-1.K-1) 1.38 145 33 C (J. K-1.Kg-1) 746 711 770  (K-1) 0.51 10-6 2.54 10-6 5.1 10-6  (dn/dT) 8 10-6 5.15 10-6 1.3 10-5 Y (GPa) 72 162.4 400  0.17 0.22 0.235 n 1.45 3.453 1.75 Best  Limiting factors Janyce Franc-WG2-Erice

Janyce Franc-WG2-Erice Coating parameters at 300K : low n materials Higher Brownian Noise SiO2 Al2O3  0.5 10-4 2.4 10-4  (kg.m-3) 2200 3700  (W.m-1.K-1) 0.5 3.3 C (J. K-1.Kg-1) 746 310  (K-1) 0.51 10-6 8.4 10-6  (dn/dT) 8 10-6 1.3 10-6 Y (GPa) 60 210  0.17 0.22 n 1.45 1.63 SiO2 Al2O3  0.5 10-4 2.4 10-4  (kg.m-3) 2200 3700  (W.m-1.K-1) 0.5 3.3 C (J. K-1.Kg-1) 746 310  (K-1) 0.51 10-6 8.4 10-6  (dn/dT) 8 10-6 1.3 10-6 Y (GPa) 60 210  0.17 0.22 n 1.45 1.63 Higher TE Noise Thicker coating Janyce Franc-WG2-Erice

Janyce Franc-WG2-Erice Coating parameters at 300K : high n materials TiTa2O5 TiO2 Nb2O5 ZrO2  2 10-4 6.3 10-3 4.6 10-4 5.9 10-4  (kg.m-3) 6425 4230 4590 6000  (W.m-1.K-1) 0.6 0.45 1 1.09 C (J. K-1.Kg-1) 269 130 590 26  (K-1) 3.6 10-6 0.5 10-6 5.8 10-6 10.3 10-6  (dn/dT) 14 10-6 -1.8 10-4 1.43 10-5 10 10-5 Y (GPa) 140 290 60 200  0.23 0.28 0.2 0.27 n 2.06 2.3 2.32 2.15 TiTa2O5 TiO2 Nb2O5 ZrO2  2 10-4 6.3 10-3 4.6 10-4 5.9 10-4  (kg.m-3) 6425 4230 4590 6000  (W.m-1.K-1) 0.6 0.45 1 1.09 C (J. K-1.Kg-1) 269 130 590 26  (K-1) 3.6 10-6 0.5 10-6 5.8 10-6 10.3 10-6  (dn/dT) 14 10-6 -1.8 10-4 1.43 10-5 10 10-5 Y (GPa) 140 290 80 200  0.23 0.28 0.2 0.27 n 2.06 2.3 2.32 2.15 Coating made By evaporation HIGH Brownian and Thermo-optic Noise Demander quel paramètre je mets : moyenne (ce qu’il y a là), la plus haute? La plus basse? Janyce Franc-WG2-Erice

COMPARISON OF COATINGS AT 300K Unless otherwise specified TOTAL THERMAL NOISES ON SIO2 SUBSTRATE w=6 cm, T=4 ppm Infinite mirror Unless otherwise specified SiO2-Ti:Ta2O5 coating offers the best result SiO2-Nb2O5 is also a good candidate (but absorption slightly higher) Refaire la simu en fonction de ce que dit RAF Janyce Franc-WG2-Erice

COMPARISON OF SUBSTRATES AT 300 K STANDARD COATING : SiO2-TiTa2O5 for 4 ppm transmission TE noise limits at low frequencies Silica and sapphire substrates reach good sensitivity Janyce Franc-WG2-Erice

Janyce Franc-WG2-Erice Substrates parameters at 10K SiO2 Silicon Sapphire  10-3 10-9 4 10-9  (kg.m-3) 2220 2331 3997  (W.m-1.K-1) 0.4 2330 800 C (J. K-1.Kg-1) 3 0.276 0.0934  (K-1) -0.25 10-6 4.85 10-10 5.3 10-10  (dn/dT) 1.01 10-6 5.8 10-6 9 10-8 Y (GPa) 71.2 162.4 464  0.159 0.2205 0.23 n 1.449 3.45 1.75 SiO2 Silicon Sapphire  10-3 10-9 4 10-9  (kg.m-3) 2220 2331 3997  (W.m-1.K-1) 0.4 2330 800 C (J. K-1.Kg-1) 3 0.276 0.0934  (K-1) -0.25 10-6 4.85 10-10 5.3 10-10  (dn/dT) 1.01 10-6 5.8 10-6 9 10-8 Y (GPa) 71.2 162.4 464  0.159 0.2205 0.23 n 1.449 3.45 1.75 Unsuitable @ 10K Janyce Franc-WG2-Erice

THERMAL NOISE OF DIFFERENT SUBSTRATES Unless otherwise specified w=6 cm Infinite mirror Unless otherwise specified SiO2 is unsuitable at 10K Silicon and sapphire have the same tendency With an advantage for silicon substrate Janyce Franc-WG2-Erice

SILICON SUBSTRATE AT LOW TEMPERATURE TOTAL THERMAL NOISES SUBSTRATE HIGH SENSITIVITY VARIATIONS vs TEMPERATURES!! Janyce Franc-WG2-Erice

Debate around 18K 18K 10K I. Martin et al. Class. Quantum Grav. 25 (2008) 055005 Janyce Franc-WG2-Erice

Simulation at 18K and assumption of =0(K-1) Higher Brownian Noise No thermoelastic substrate noise but High Brownian Coating Noise No particular interest in working at 18K (unless coatings get much better) Janyce Franc-WG2-Erice

Janyce Franc-WG2-Erice Coating Parameters @ 10K SiO2 thin film Ti:Ta2O5 thin film Silicon substrate  5 10-4 3.8 10-4 10-9  (kg.m-3) 2200 6425 2331  (W.m-1.K-1) 0.13 0.4 (taken at room T°) 2330 C (J. K-1.Kg-1) 4 3.17 @ 50K 0.276  (K-1) -0.25 10-6 3.6 10-6 4.85 10-10  (dn/dT) 1.01 10-6 14 10-6 5.8 10-6 Y (GPa) 60 140 162.4  0.159 0.21 0.2205 n 1.44876 @ 30K 2.05 3.45 @ 30K Janyce Franc-WG2-Erice

Unless otherwise specified Study of the unknown parameters of Ta2O5 film T=10K Substrate : Si w=8.65 cm (Ø: 45 cm) Infinite MIRROR model =3.6 10-6 =14 10-6 Unless otherwise specified Janyce Franc-WG2-Erice

Impact of thermal coefficients on thermal noises =25 10-4 (K-1) =6 10-5 (K-1) Thermal expansion coefficient limits sensitivity if value 20 times larger than value @ 300 K Thermo refractive coefficient limits sensitivity if value 200 times superior to value @ 300 K Janyce Franc-WG2-Erice

CONCLUSION on  and  parameters THERMAL EXPANSION COEFFICIENT 1.Thermal expansion coefficient should attain 6 10-5 to disturb the tendency of thermal noise 2. Values at room T° for thin film that we can find in the litterature stayed around 10-6. At low temperature only substrate values are known and they still decrease. THERMO OPTIC COEFFICIENT 1.Thermo refractive coefficient should attain 25 10-4 to overtake the curve of brownian noise = Not reasonable ! 2. Indeed, the values at room and low temperatures that we can find in the litterature stayed also around 10-6 or tends to decrease at cryogenic temperature. For example : Silica (1.01 10-6 @ 30K), Silicon (5.8 10-6 @ 30K). Coating Thermoelastic and Thermorefractive noise not likely to be a problem at cryogenic temperature: Brownian noise is the limit Janyce Franc-WG2-Erice

Mirror reference design for ET (cold case) Substrate material: several arguments in favor of silicon. Good mechanical properties Good transmission Can rely on microelectronics industry investment to get larger pieces Dimension Microelectronics industry objective: 45 cm wafer by 2012 Reasonable reference solution: 45 cm diameter, 30 cm thick mirror (avoid thin mirror solution) Weight ~110 kg (~x3 Advanced detectors): sufficient for pendulum thermal noise? Coating Keep present materials as reference solution: Ti:Ta2O5 / SiO2 Spectrophotometer measurements show good transparency at 1.5 mm (no absorption bands). But absorption need to be precisely measured Alternatives: Nb2O5 and/or Gratings Janyce Franc-WG2-Erice

PROPOSITION: Cryogenic mirror reference design SILICON SUBSTRATE+ DIAMETER : 45cm + THICKNESS : 30 cm + STANDARD COATING FINITE MIRROR Janyce Franc-WG2-Erice

Janyce Franc-WG2-Erice Conclusion At 300K : Silica substrate and Ti:Ta2O5/SiO2 coating the best solution so far Other coatings deserve more studies (e.g. Nb2O5) - At cryogenic temperature Several coating thermal parameters unknown but detailed study shows small impact on total noise Coating brownian noise remains the limit Sapphire and Silicon gives similar results No significant interest to operate at 18K. The coating loss angles are larger. Silicon mirror (Ø=45 cm + h=30cm) + T° of 10K + Standard coating gives already promising result. Could be the first reference solution for cold mirror. Janyce Franc-WG2-Erice