Algebra 2 Name:_____________________ Graphing Quadratics Date:___________Block:_____ 5.1 Graphing Quadratic Functions in Standard Form f(x)= f(x)=x2-x-6 x y -3 -2 -1 1 2 3 The graph of a quadratic function is called a _______________________. Important Parts of a Parabola: Axis of Symmetry Vertex X-Intercepts (Zeros) Y-Intercepts If a > 0, the parabola opens _________. If a < 0, the parabola opens _________. (_____________ “a”) (_____________”a”) Axis of Symmetry x=# *recall x=# is a vertical line Vertex (x,y) The vertex is a POINT!!!
** The y-intercept will always be the ____ value Examples: For each state the equation of the axis of symmetry and the vertex. y=x2-6x+5 y=-x2-2x+1 Axis of Symmetry: x=___ Vertex:________ Axis of Symmetry: x=___ Vertex:________ Axis of Symmetry: x=___ Vertex:________ Axis of Symmetry: x=___ Vertex:________ Axis of Symmetry: x=___ Vertex:________ To find the x- and y- intercepts of a function…. Y-intercept Replace "x" with 0. Solve for "y." X-intercept Replace “y" with 0. Solve for “x." ** The y-intercept will always be the ____ value Practice: Identify the x and y intercepts for each.
Directions: For each quadratic identify the axis of symmetry, vertex, x- and y-intercepts. Graph the parabola using the information. Show all work. 1) 2) Axis: x = ____ Vertex: (___, ___) x-int: (___, 0) & (___, 0) y-int: (0, ___) Axis: ____________ Vertex: ________ x-int: ____________ y-int: _________ 3) 4) Axis: x = ____ Vertex: (___, ___) x-int: (___, 0) & (___, 0) y-int: (0, ___) Axis: ____________ Vertex: ________ x-int: ____________ y-int: _________ 5) 6) Axis: ____________ Vertex: ________ x-int: ____________ y-int: _________ Axis: ____________ Vertex: ________ x-int: ____________ y-int: _________
Algebra 2 Name: _________________________ Graphing Quadratics – Practice 1 Date: __________________________ Directions: For each quadratic identify the axis of symmetry, vertex, x- and y-intercepts. Graph the parabola using the information. Show all work. 1) f(x) = x2 – 4 a = ___, b = ___, c = ___ 2) y = -2x2 + 4x Axis: x = ____ Vertex: (___, ___) x-int: (___, 0) & (___, 0) y-int: (0, ___) Axis: ____________ Vertex: ________ x-int: ____________ y-int: _________ 3) y = -x2 + 2x + 3 4) f(x) = x2 + 6x + 8 Axis: ____________ Vertex: ________ x-int: ____________ y-int: _________ Axis: ____________ Vertex: ________ x-int: ____________ y-int: _________