9.1 Describing Acceleration

Slides:



Advertisements
Similar presentations
(c) McGraw Hill Ryerson Calculating Acceleration The acceleration of an object is dependent upon the change in velocity and the time required.
Advertisements

(c) McGraw Hill Ryerson Calculating Acceleration.
(c) McGraw Hill Ryerson Calculating Acceleration The relationship of acceleration, change in velocity, and time interval is given by the equation:
PHYSICAL SCIENCE MOTION
Acceleration, Speed and Velocity
 When you are in motion, you are constantly adjusting your velocity and direction to match what is happening around you.  Changing velocity is called.
Motion: 8.2 THURSDAY APRIL 17 th Cheetah clip (c) McGraw Hill Ryerson 2007.
9.1: Acceleration is the rate of change in velocity FRIDAY APRIL 25th APRIL (c) McGraw Hill Ryerson 2007.
Linear Motion-Acceleration
(c) McGraw Hill Ryerson Calculating Acceleration  Increasing the stopping time decreases the acceleration  Decreasing the stopping time increases.
8.1 The language of motion.
(c) McGraw Hill Ryerson Average Velocity Speed ( ) is the distance an object travels during a given time interval divided by the time interval.
Acceleration, Speed and Velocity Acceleration is the rate of change of velocity. When the velocity of an object changes, the object is accelerating. A.
Section 2 Acceleration.  Students will learned about  Describing acceleration  Apply kinematic equations to calculate distance, time, or velocity under.
UNIT 3: Motion Chapter 5: Investigating Motion Chapter 6: Applied Motion.
(c) McGraw Hill Ryerson Average Velocity Pages 362 – 375 Words to Know:  average velocity  Speed  Velocity.
9.1 Describing Acceleration We have already examined uniform motion. –An object travelling with uniform motion has equal displacements in equal time intervals.
Objectives: Evaluate the difference between velocity and acceleration. Solve simple acceleration problems in one dimension.
9.1- Describing Acceleration An object travelling with uniform motion has equal displacements in equal time intervals. Not all objects exhibit uniform.
9.1 Describing Acceleration An object travelling with uniform motion has equal displacements in equal time intervals. Not all objects exhibit uniform motion.
Unit 2 Section 2 NotesAcceleration. Acceleration  Acceleration: rate of change in velocity  An object accelerates if:  It’s speed changes: if an object.
9.1 Describing Acceleration An object travelling with uniform motion has equal displacements in equal time intervals. 1.8m 1.8m 1.8m 1.8m (  d) 0s 1s.
9.1 Describing Acceleration. Review: What should we know already? So far, we have learned about uniform motion:  An object traveling with uniform motion.
9.1 Describing Acceleration
9.1 Describing Acceleration
KINEMATICS ACCELERATION.
Describing Motion Acceleration
Uniform and Non-uniform Motion
Many words are used when describing motion.
Sec Acceleration.
Principles of Technology
This topic can be found in your textbook on pp
Accelerated Motion Chapter 3.
Acceleration Notes.
9.1 Describing Acceleration
Velocity is a vector quantity and must include direction.
9.1 Describing Acceleration
Chapter 6: Applied Motion
9.2 Calculating Acceleration
9.1 Describing Acceleration
9.2 Calculating Acceleration
9.1 Describing Acceleration
9.1 Describing Acceleration
Speed is a scalar quantity because it has no direction.
9.1 Describing Acceleration
9.2 Calculating Acceleration
9.1 Describing Acceleration
Uniform and Non-uniform Motion
Speed Speed (ν) is the distance an object travels during a given time interval divided by the time interval. Speed is a scalar quantity. The SI unit for.
Average Velocity.
Velocity is a vector quantity and must include direction.
Acceleration (a) Non Uniform Motion
Acceleration.
9.2 Calculating Acceleration
Ch. 8.2 Average Velocity Speed ( ) = the distance an object travels divided by the time to travel that distance. Speed is a scalar quantity (no direction).
9.2 Calculating Acceleration
The slope of a velocity-time graph is ______________________.
Describing Motion Acceleration
DESCRIBING ACCELERATION
Unit 6 (2) Acceleration Physical Science.
Acceleration Chapter 2.4.
Velocity-time Graphs:
Acceleration, Speed and Velocity
9.2 Calculating Acceleration
9.1 – Describing Acceleration
Motion Section 3 Acceleration
Velocity-Time Graphs for Acceleration
Putting all the Graphs Together
Acceleration & Velocity Time Graphs
Acceleration Chapter 9.3 Page 350.
Presentation transcript:

9.1 Describing Acceleration An object travelling with uniform motion has equal displacements in equal time intervals. Not all objects exhibit uniform motion. It is important to be able to analyze situations where the motion is not uniform. An object travelling with non-uniform motion will: have different displacements during equal time intervals take different amounts of time to travel equal displacements have a continuously changing velocity As she slides, the velocity of the baseball player is continually changing, therefore her motion is non-uniform. See page 383 (c) McGraw Hill Ryerson 2007

9.1 Describing Acceleration Imagine a space shuttle launching from Earth. As the height of the space shuttle increases, it is moving faster and faster – its velocity is increasing……in other words, the space shuttle is accelerating! (c) McGraw Hill Ryerson 2007

Positive and Negative Changes in Velocity A change in velocity ( ) occurs when the speed of an object changes and/or its direction of motion changes. A change in velocity can be calculated by: If the change in velocity is the same sign (+, -) as the initial velocity, the speed of the object is increasing. If the change in velocity is the opposite sign (+, -) of the initial velocity, the speed of the object is decreasing. If the change in velocity is zero, the object is travelling with uniform motion. If forward is designated positive, this dragster’s change in velocity is positive. If forward is designated positive, this landing shuttle has a negative change in velocity. See page 382 (c) McGraw Hill Ryerson 2007

For Example: Suppose you are riding your bike travelling forward at 6 m/s. You need to get somewhere in a hurry, so you increase your velocity to 9 m/s. What is your change in velocity? Now suppose you apply your brakes to slow down from 9 m/s to 2 m/s. What is your change in velocity? (c) McGraw Hill Ryerson 2007

Think about a roller coaster… Consider the images above…as the people approach the top of the roller coaster, they are moving with constant or uniform velocity. But, the velocity and direction change throughout the rest of the ride, which is why you feel pulled forward and backward, and pushed side to side on a wild ride. (c) McGraw Hill Ryerson 2007

Acceleration (a) is the rate of change in velocity. This change in velocity can be due to a change in speed and/or a change in direction. Acceleration is a vector, meaning that it has both magnitude and direction. Two objects with the same change in velocity can have different accelerations. This is because acceleration describes the rate at which the change in velocity occurs. Suppose both of these vehicles, starting from rest, speed up to 60 km/h. They will have the same change in velocity, but, since the dragster can get to 60 km/h faster than the old car, the dragster will have a greater acceleration. See page 384 (c) McGraw Hill Ryerson 2007

Acceleration can be either positive or negative. In general, positive acceleration means the object is speeding up. In general, negative acceleration means the object is slowing down. (c) McGraw Hill Ryerson 2007

Positive and Negative Acceleration The direction of the acceleration is the same as the direction of the change in velocity. Acceleration that is opposite the direction of motion is sometimes called deceleration. Examples of acceleration: 1. A car speeding up in the forward direction If we designate the forward direction as positive (+), then the change in velocity is positive (+), therefore the acceleration is positive (+). Acceleration is positive in this example See pages 385 - 386 (c) McGraw Hill Ryerson 2007

Positive and Negative Acceleration Examples of acceleration: 2. A car slowing down in the forward direction. If we designate the forward direction as positive (+), then the change in velocity is negative (-), therefore the acceleration is negative (-). Acceleration is negative in this example See pages 385 - 386 (c) McGraw Hill Ryerson 2007

Positive and Negative Acceleration Positive and negative acceleration also depend on the direction of an object’s motion. 3. A car speeding up in the backward direction. If we designate the backward direction as negative (-) then the change in velocity is negative (-). This means that the acceleration is negative (-) even though the car is increasing its speed. Remember positive (+) and negative (-) refer to directions. A car speeds up in the backward direction. See pages 385 - 386 (c) McGraw Hill Ryerson 2007

Positive and Negative Acceleration Examples of acceleration: 4. A car slowing down in the backward direction. If we designate the backward direction as negative (-) then the change in velocity is positive (+). This means that the acceleration is positive (+) even though the car is decreasing its speed. Remember positive (+) and negative (-) refer to directions. A car slows down in the backward direction. See pages 385 - 386 Take the Section 9.1 Quiz (c) McGraw Hill Ryerson 2007