Scintillator-based online detectors for laser-accelerated protons –

Slides:



Advertisements
Similar presentations
Matter waves 1 Show that the wavelength of an electron can be expressed as where E is the energy in volts and  in nm.
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Topic 8. Gamma Camera (II)
New developments of Silicon Photomultipliers (for PET systems)
1 A first design of the PEP-N Calorimeter A first design of the PEP-N Calorimeter Presented by P. Patteri Laboratori Nazionali di Frascati INFN for PEP-N.
INFN Milano, Universita` degli Studi Milano Bicocca Siena IPRD May Testbeam results of the CMS electromagnetic calorimeter Alessio Ghezzi.
Cirrone G. A. P. , Cuttone G. , Raffaele L. , Sabini M. G
TU Darmstadt Inertial Confinement Fusion Dieter H.H. Hoffmann TU / GSI Darmstadt 300. WE-Heraeus Seminar ENERGIEFORSCHUNG Mai 2003.
POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
The E166 Experiment K. Peter Schüler e+ source options for the ILC undulator source scheme for ILC E166 – proof-of-principle demonstration of the undulator.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
M. Mayer SEWG Fuel Retention June Sample Analysis for TS, AUG and JET: Depth Profiling of Deuterium M. Mayer Max-Planck-Institut für Plasmaphysik,
FOM-Institute for Plasma Physics Rijnhuizen Association Euratom-FOM T E CT E C T E CT E C Carbon Chemical Erosion Yield Experiments in Pilot-PSI Jeroen.
FIGURE 6.1 The electromagnetic radiation spectrum covers everything from very low frequency (VLF) radio to X-rays and beyond. Curtis Johnson Process.
An Image Filtering Technique for SPIDER Visible Tomography N. Fonnesu M. Agostini, M. Brombin, R.Pasqualotto, G.Serianni 3rd PhD Event- York- 24th-26th.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Multi Beamlett Extraction Experiments and Sector Magnet Field Investigation.
Silicon detectors in HEP
Experimental Particle Physics
ZMQS ZMQS
The Central Straw Tube Tracker In The PANDA Experiment
NUCP 2371 Radiation Measurements II
Speaker: Tzung Da Jiang Adviser : Dr. Ja-Hon Lin
Calibration of a Modular Straw-Tube- Tracker for the COSY-TOF Experiment Sedigheh Jowzaee 3-6 June 2013, Symposium on Applied Nuclear Physics and Innovative.
Prototype sPHENIX Calorimeters
Center for Radiative Shock Hydrodynamics Fall 2011 Review Experimental data from CRASH experiments Carolyn Kuranz.
High pressure RF cavity project Katsuya Yonehara APC, Fermilab 2/28/11 - 3/4/111.
ABC Technology Project
FAR-IR OPTICS DESIGN AND VERIFICATION EXPERIMENTAL SYSTEM AND RESULTS Final Meeting “Far-IR Optics Design and Verification”, Phase 2 27 November 2002,
© 2012 National Heart Foundation of Australia. Slide 2.
Wilhelm Conrad Röntgen
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
1 LOA-ENSTA. 2 3 For PW class laser, a contrast better than is required I ASE has to be < W/cm² The ASE intensity is enough to generate.
Addition 1’s to 20.
25 seconds left…...
SNS Spallation Neutrino Source 1 SNS layout GeV proton linear accelerator Accumulator ring Main target Stripping foil.
Week 1.
Mitglied der Helmholtz-Gemeinschaft Beam Cooling at HESR in the FAIR Project 12 th September 2011 Dieter Prasuhn.
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Member of the Helmholtz Association High-Speed PIXE.
We will resume in: 25 Minutes.
1 Unit 1 Kinematics Chapter 1 Day
Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012 CLASSE Cornell University CHESS & ERL 1 Cornell Laboratory for Accelerator-based ScienceS.
High-Speed PIXE A spatially resolved PIXE setup at the
| Institut für Kernphysik | Project C2 | Inna Pysmenetska | 1 Precision Measurement of the Proton Charge Radius with Elastic Electron Scattering*
Study of plastic scintillators for fast neutron measurements
PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
Alexander Klyachko, IU Cyclotron, PTCOG51, Seoul, South Korea, May 17-19, 2012 A.V. Klyachko 1, D.F. Nichiporov 1, L. Coutinho 2, C.-W. Cheng 2, 3, M.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
Neutron Generation and Detection Lee Robertson Instrument & Source Division Oak Ridge National Laboratory 17 th National School on Neutron and X-ray Scattering.
Scanning Electron Microscope (SEM)
Munich-Centre for Advanced Photonics A pixel detector system for laser-accelerated ion detection Sabine Reinhardt Fakultät für Physik, Ludwig-Maximilians-Universität.
Fast Electron Temperature Scaling and Conversion Efficiency Measurements using a Bremsstrahlung Spectrometer Brad Westover US-Japan Workshop San Diego,
Development of a Gamma-Ray Beam Profile Monitor for the High-Intensity Gamma-Ray Source Thomas Regier, Department of Physics and Engineering Physics University.
Multi-colour sctintillator-based ion beam profiler James Green, Oliver Ettlinger, David Neely (CLF / STFC) 2 nd Ion diagnostic workshop June 7-8 th.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
B. Azadegan, S. A. Mahdipour Hakim Sabzevari University
1 Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison,
Development of a Compton Camera for online range monitoring
Diagnostics of FRIBs beam transport line
Impurity Transport Research at the HSX Stellarator
L. Obst, S. Göde, M. Rehwald, F. -E. Brack, J. Branco, S. Bock, M
Profile measurements at CTF
Diagnostics overview Beam profile monitors Cherenkov radiators Summary
Presentation transcript:

Scintillator-based online detectors for laser-accelerated protons – Concepts and realizations at the DRACO lab J. Metzkes, K. Zeil, S.D. Kraft, N. Stiller, U. Schramm, L. Karsch, C. Richter, J. Pawelke, M. Sobiella Instrumentation for Diagnostics and Control of Laser-Accelerated Proton (Ion) Beams II June 7 – 8, 2012 Experiments at draco laser HZDR

The DRACO laser facility time [fs] 30 fs -80 -40 40 80 Ti:Sapphire CPA laser rep rate: 10 Hz 2-3 J (on target) I ~1021 W/cm2 ns-ASE contrast 10-10 *Dresden laser acceleration source

Proton acceleration at DRACO RCF @ wheel 2D offline target changer target manipulation Thomson parabola small solid angle online online laser parameter control

Proton acceleration at DRACO RCF @ wheel 2D offline target changer target manipulation Thomson parabola small solid angle online online laser parameter control Status stable high repetition rate laser system  reliable proton source high degree of remote control under vacuum online optimization and monitoring of acceleration performance application experiments online spectrometers for protons & ions (1D or 2D) NEED

Why plastic scintillators? Mainly practical reasons: easy to handle available in nearly any size and thickness  no support necessary immediate light emission after excitation  online information variable emission wavelength in the visible range signal readout with CCD cameras  less EMP issues fast decay rates possible  TOF applications linear response to particle flux light emission saturates with dE/dx  calibration light emission degrades with total dose exposition

Detector setup 1D angularly resolved online spectrometer for protons scintillator stack: 10 layers of BC 418 (Saint-Gobain crystals), maximum emission @ 391 nm resolution of 10 proton energy ranges light guide principle  slim scintillator unit (15 mm x 76 mm) fan-like setup for good spatial resolution detection area: 10 mm x 50 mm  detection angle as for RCF (~ 26° half angle ) compact detector: scintillator and camera unit only 300 mm x 80 mm radiation shielding with Pb

Detector setup camera: ◦ 16 bit camera  high dynamic range ◦ 1600 x 1200 px chip size, 4.4 µm pixel size camera unit directly coupled to the scintillator: ◦ light tight connection  stray light suppression ◦ high light yield ◦ good spatial resolution  7px per layer thickness

Imaging properties 182 mm imaging edge polished surfaces polished for efficient reflection edges roughened to avoid reflection spatial resolution

Detector setup & proof of principle proton distribution reconstructed from RCF p+ energy Measured proton distribution CCD camera image

Detector setup & proof of principle energy Measured proton distribution CCD camera image sufficient signal-to-noise ratio (>2) for signal detection  shielding against electron and x- ray background maximum proton energy and yield online accessible for the full divergence angle of the proton beam online detection of beam inhomogeneities  improves online beam optimization

Detector characterization @ Tandetron 6 MV tandetron at the HZDR Ion Beam Center 12 MeV p+ beam FC – 25.4 mm diam. detection surface  current ~ 100pA detector reference RCF – beam homogeneity beam defining aperture – 10 mm diam. reference RCF – beam position

Sensitivity calibration

Sensitivity calibration dE/dx saturation of scintillator light output light transport within the scintillator case  correction possible condition of polished scintillator edge

Lateral homogeneity overall lateral homogeneity: ~ 80% lateral position decrease due to imaging properties overall lateral homogeneity: ~ 80% inhomogeneity due to scintillator conditions  stable measured curves give correction factors

Imaging properties testing spatial resolution imaging properties

Imaging properties testing spatial resolution imaging properties

Detector application online detector proton beam Idocis aperture beam filter target laser online detector proton beam Phys. Med. Biol. 56 (2011) 1529–1543 non-invasive online access to spectral distribution and yield of accelerated protons

Detector application dispersion optimal focus 25 µm out of focus dispersion energy online optimization & monitoring of experimental performance via maximum proton energy & yield shot-to-shot monitoring via yield (higher sensitivity) online spectral monitoring  dosimetry

2D online detector development profile A-A` profile B-B` profile C-C` 2,5 0,4 0,7 1,0 1,9 2,1 1,2 1,4 1,6 Idea: mimic an RCF stack  2D spectrum ONLINE ~ 50 4,5 A A` B B` C C` Schnitt A-A` Schnitt B-B` Schnitt C-C` CCD camera scintillator

2D online detector development ~ 50 4,5 A A` B B` C C` camera unit absorber matrix & scintillator (BC 416, thickness 260 µm) Detector setup

2D detector testing Test matrix optimized for tandetron test with 12 MeV p+ basic pixel (9 energies): 4.5 x 4.5 mm  121 pixels on a 50 x 50 mm plate diam 1.5 mm dist 2.0 mm dist 2.25 mm dist 2.50 mm dist 2.75 mm diam 1.0 mm dist 1.50 mm Test matrix optimized for tandetron experiment (12 MeV protons)

2D detector testing Progress final design for basic pixel basic pixel (9 energies): 4.5 x 4.5 mm  121 pixels on a 50 x 50 mm plate Progress final design for basic pixel sensitivity calibration @ tandetron test of p+ scattering in angled holes To do test of a final design @ DRACO  performance with background radiation

… thanks for your attention (multiple filamentation of a freely propagating 100 TW beam in air) … thanks for your attention