QPOs of LMXBs kHz QPO, millisecond pulsar

Slides:



Advertisements
Similar presentations
X-ray pulsars in wind-fed accretion systems 王 伟 (NAOC) July 2009, Pulsar Summer School Beijing.
Advertisements

Inner Cool Disks in the Low/Hard State of Accreting Black Holes 刘碧芳云南天文台 In collaboration with R.E. Taam, F. Meyer, and E. Meyer-Hofmeister.
Neutron Stars and Black Holes Please press “1” to test your transmitter.
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Mass transfer in a binary system
Neutron Stars and Black Holes
Neutron Stars Chapter Twenty-Three.
(1) 黑洞的基本物理 (2) 解释 AGN 的连续谱辐射的产生机制 UV - optical IR Lecture 3.
Low Mass X-ray Binaries and Accreting Millisecond Pulsars A. Patruno R. Wijnands R. Wijnands M. van der Klis M. van der Klis P. Casella D. Altamirano D.
HistCite 结果分析示例 罗昭锋. By:SC 可能原因:文献年度过窄,少有相互引用.
核子结构的 “ 新 ” 图像 陈相松 四川大学 华中科技大学. 提要 核子结构研究的目标 终极目标与阶段性目标 核子结构图像的 “ 演化 ” : 原始图像、 “ 标准 ” 图像、 “ 新 ” 图像 [1]Phys.Rev.Lett.100:032002(2008) [2]Phys.Rev.Lett.103:062001(2009)
Pulsars in Low-Mass X-Ray Binaries Deepto Chakrabarty Massachusetts Institute of Technology.
1. White Dwarf If initial star mass < 8 M Sun or so. (and remember: Maximum WD mass is 1.4 M Sun, radius is about that of the Earth) 2. Neutron Star If.
数理学院 暗能量及修改引力 龚云贵 重庆邮电大学数理学院 中国科技大学交叉学科理论研究中心, 2011 年 4 月 15 日.
Galloway, “Accreting neutron star spins and the prospects for GW searches” 1 Accreting neutron star spins and the prospects for GW searches Duncan Galloway.
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: High Energy II: X-ray Binaries Geoff Bower.
Accreting Neutron Stars, Equations of State, and Gravitational Waves C. B. Markwardt NASA/GSFC and U. Maryland.
Neutron star low-mass X-ray binaries Rudy Wijnands Anton Pannekoek Institute for Astronomy University of Amsterdam 3 August 2015Lorentz center, Leiden.
Simulation of the Recycled Pulsar Evolution Pan Yuanyue, Wang Na and Zhang Chengmin, Xinjiang Astronomical Observatory, CAS, Urumqi, China National Astronomical.
Timing Relativistic Binary Pulsars to test Gravitation and measure NS masses Paulo C. C. Freire Arecibo Observatory / Cornell University.
Correlations Between the Twin kHz QPO Frequencies in Neutron Star Low-Mass X-ray Binaries 尹红星 张承民 NAOC, CAS April 22th, 2006.
A toy model for HFQPOs in XRBs Ye Yong-Chun ( 叶永春 ), Wang Ding-Xiong( 汪定雄 ) Department of Physics, Huazhong University of Science and Technology, Wuhan,
RXTE and Observations of GC Transients C. B. Markwardt (NASA/GSFC)
QPOs ,准周期振荡 in Black Hole , Neutron Star X-ray Sources: X-ray bursts, accreting-powered pulsars Einstein’s Relativity in Strong Gravitation 张承民, 尹红星 National.
May Ljubljana Magnetic Field Upper Limits for Jet Formation in X-ray binaries & AGNs M. Kaufman Bernadó 1,* & M. Massi 1 1 Max Planck Institut für.
1 ACCRETING X-RAY MILLISECOND PULSARS IN OUTBURST M A U R I Z I O F A L A N G A Service d‘Astrophysique, CEA –Saclay Collaborators: J. Poutanen, L. Kuipers,
1 ACCRETING X-RAY MILLISECOND PULSARS M A U R I Z I O F A L A N G A & E R I N W. B O N N I N G NS day, ParisJune 27, 2007 Service d‘Astrophysique, CEA.
Timing and Spectral Properties of Neutron Star Low-Mass X-ray Binaries Sudip Bhattacharyya Department of Astronomy and Astrophysics Tata Institute of Fundamental.
Millisecond Pulsar and kHz QPOs of LMXB Chengmin ZHANG, NAOC 2011 – NAOC Collaborators: J. Wang, L.M. Song, Y.J. Lei, F. Zhang.
A Toy Model for 3:2 HFQPO Pairs in Black Hole Binaries XTE J and GRO J Ding-Xiong WANG( 汪定雄 ), Zhao-Ming GAN (speaker, 甘朝明 ), Chang-Yin.
Sub-Eddington accretion flows in neutron-star low-mass X-ray binaries Rudy Wijnands Astronomical Institute “Anton Pannekoek” University of Amsterdam 25.
脉冲星研究的现状与展望 乔国俊 北京大学文理学院天文学系 脉冲星研究的现状与展望 I. 简介 II. 引力波的检测 III. 新天体的搜寻 IV. 对 “ 磁星 ” 的挑战 V. 广阔的前景、(守时性和导航)
The Radio Millisecond Pulsar PSR J : A Link to Low-Mass X-Ray Binaries Slavko Bogdanov.
Timing Features of XTE J in 2003 March outburst Fan Zhang et al. (astro-ph/ ) --Possible Evidence for Accreting Blobs.
Historical SN and their properties Total energy released ~10 54 erg in a few hours.
Black Holes Accretion Disks X-Ray/Gamma-Ray Binaries.
Abbas Askar University of Belgrade 12 th November 2011 Astronomy Workshop Presentation Belgrade, Serbia.
Gabriel Török* On orbital models of kHz QPOs in neutron star binaries *Institute of Physics, Faculty of Philosophy and Science, Silesian University in.
1 Chang-Hwan Spin of Stellar Mass Black Holes: Hypernova and BH Spin Correlation in Soft X-ray BH Binaries.
Paczyński Modulation: Diagnostics of the Neutron Star EOS? Institute of Physics, Silesian University in Opava Gabriel Török, Martin Urbanec, Karel Adámek,
Comparing with redshift surveys of galaxies. Redshift surveys –brief review CFA galaxies (1983) Las Campanas galaxies (1996) 2dF ,000.
Accreting neutron stars as gravitational wave sources Duncan Galloway Andrew Melatos University of Melbourne Ed Morgan Deepto Chakrabarty Center for Space.
Be/X-Ray 双星中的中子星自传演化 成忠群 南京大学 Contents 1. Introduction (1) Observed period gap for BeXBs (2) Possible interpretation by the authors 2. What.
带强磁场奇异星的 中微子发射率 刘学文 指导老师:郑小平 华中师范大学物理科学与技术学院. Pulsar In 1967 at Cambridge University, Jocelyn Bell observed a strange radio pulse that had a regular period.
Mass & Radius of Compact Objects Fastest pulsar and its stellar EOS CHENGMIN ZHANG National Astronomical Observatories Chinese Academy of Sciences, Beijing.
Formation of Redback and Black Widow Binary Millisecond Pulsars
When a star dies…. Introduction What are compact objects? –White dwarf, neutron stars & black holes Why study? –Because it’s fun! –Test of physics in.
kHz QPOs of LMXBs Constrains on Pulsar Parameters Chengmin Zhang & Hongxing Yin National Astronomical Observatories, Beijing.
Recent Progress about kHz QPO and Spin in LMXB and their implications C.M. Zhang, H.X. Yin, Y. Yan, L.M. Song, F. Zhang National Astronomical Observatories,
一、弧微分 规定:   单调增函数 如图,   弧微分公式 二、曲率及其计算公式 曲率是描述曲线局部性质(弯曲程度)的量. ) ) 弧段弯曲程度 越大转角越大 转角相同弧段越 短弯曲程度越大 1 、曲率的定义 )
Gravitational Waves What are they? How can they be detected?
Zdeněk Stuchlík, Gabriel Török, Petr Slaný Multi-resonant models of quasi-periodic oscillations Institute of Physics, Faculty of Philosophy and Science,
Neutron star radii and the EOS of neutron-rich matter
Neutron Stars and Black Holes
RXTE Spectral Observations of the Galactic Microquasar GRO J1655-40
Basic Properties By Dr. Lohse, University of Berlin
Evidence for an Intermediate Mass Black Hole in NGC 5408 X-1
黑洞X射线双星的高频准周期振荡(HFQPO)与喷流(Jet)的 相关性
Neutron Stars and Black Holes
Accretion in Binaries II
General Relativity in X-ray Astronomy Astrosat and Future Experiments
BH binaries.
Neutron Star masses.
Black Holes: Observations Lecture 2: BHs in close binaries
On the formation of the peculiar LMXB IGR J in Terzan 5
Black Holes Escape velocity Event horizon Black hole parameters
An overview on HXMT XRB observations/researches
Are there atoll/Z sources in HMXB
QPO in BHXRB HFQPO (50 to hundreds Hz) LFQPO (up to Hz) →
Presentation transcript:

QPOs of LMXBs kHz QPO, millisecond pulsar 张承民 尹红星 National Astronomical Observatories Chinese Academy of Sciences

Nobel Prize for Pulsar: Rotating Neutron Star 脉冲星发现40年: 1967-2007 1974, A. Hewish, Cambridge U, First Pulsar 1993, R. Hulse, J.A. Taylor, Princeton U, Binary Pulsar Nobel Prize for Pulsar: Rotating Neutron Star

Pulsar Froms: SUPERNOVA EXPLOSION Chinese Astronomer recorded Crab Nebula in 1054 AD, Song Dynasty. It is a great glory of our forefather SUPERNOVA EXPLOSION

Neutron Star 10km, solar mass

Neutron Star (NS) in Low Mass X-ray Binary OUTLINE OF TALK Neutron Star (NS) in Low Mass X-ray Binary KHz Quasi Periodic Oscillation (QPO) Millisecond accreting-powered X-ray Pulsar Type-I X-ray Burst Oscillation Other QPOs of NS & BH Theoretical Mechanisms---QPOs Further Expectations

RXTE INTRODUCTION Rossi X-ray Timing Explorer (RXTE): NASA Named after the astronomer, Bruno Rossi, died in 1993 3000+ kg RXTE satellite Launched on Dec. 30, 1995 Delta II rocket into earth orbit 600 km and 23 deg inclination Time const = 0.5 ms

Basic Physical Parameters 动力学时间尺度, 强引力场 Characteristic Velocity: (GM/R)1/2 ~ 0.5c Schwarzschild Radius: Rs = 2GM/c2 Characteristic Time Scale: 2π(R3/GM)1/2 ~ 0.6 (ms) G: Gravitational Const, c: Speed of Light M: Mass, R: Radius Rs = 5 km, for M= 1.4 Mסּ, solar mass Rs = 3 cm, for M= 1.0 Me, earth mass Rs /R = 0.3 : Gravitational Strength

RXTE Instruments Proportional Counter Array (PCA) sensitive to X-rays 2-60 keV. collecting area (6250 cm2) High Energy X-ray Timing Experiment (HEXTE) The All Sky Monitor (ASM) scan most of the sky every 1.5 hours

RXTE Target A/Periodic, transient, and burst in X-ray emission Characteristics of X-ray binaries, masses, orbital, matter exchange Property: nuclear matter composition, M-R relation, neutron/strange star ? magnetic field Behavior of matter into/onto a black hole/NS Strong Gravity of GR near a black hole Mechanisms causing X-ray emission Strong Gravity, GR, Precession, LS M,R,Spin, EOS, Thermonuclear

Binary X-ray Sources Normal Star + Compact Star 10,000 lyr, 300 - 450Hz QPOs, Micro-quasar, Radio jet, 7 solar mass/optical

QPO frequencies discovered by RXTE 1996—2007, reviewed by van der Klis 2006 FBO/NBO, ~5-20 Hz, Yu et al 2001-06 HBO, ~15-70 Hz Hundred, ~100 Hz kHz, ~1000-Hz(27) Burst oscillation, ~400 Hz(16) Spin frequency, ~400 Hz (7) Low, high QPO, ~0.1 Hz Others. QPO: Quasi Periodic Oscillation 准周期振荡

Typical twin KHZ QPOs (21/27) Separation ~300 Hz Typically: Twin KHz QPO Upper ν2 = 1000 (Hz) Lower ν1 = 700 (Hz) 21/27 sources; ~290 对 Sco x-1, van der Klis 2006

Atoll and Z Sources --- LMXB CCD ~1% Eddington Accretion ~Eddington Accretion Accretion rate direction

QPO v.s. Accretion rate relation QPO frequency increases with the accretion rate SCO X-1, Van der Klis, 2006 QPO轮廓随吸积率变宽/低,消失 Mendez 2005

KHz QPO Data,Atoll sources 最大值Max:νmax=1329 Hz, van Straaten 2000 min: ~200 Hz 平均值/Distribution of kHz QPOs:QPO (Atoll) ~ QPO(Z) Zhang et al 2006 MNRAS; 原因?

kHz QPOs of Z Sources

Difference of twin kHz QPOs = const Difference of twin kHz QPOs = const? Beat model by Miller, Lamb & Psaltis 1998; Strohmayer etal 1997

Saturation of kHz QPO frequency ? 4U1820-30, NASA W. Zhang et al, 1998 Kaaret, et al 1999 Swank 2004; Miller 2004 BH/ISCO: 3 Schwarzschild radius Innermost stable circular orbit NS/Surface: star radius, hard surface

Parallel Line Phenomenon kHz QPO-luminosity relation Similarity/Homogeneous ? Among the different sources, same source at the different time

kHz QPO v.s. Count rate kHz QPO corresponds to the position in CCD, to accretion rate Mdot; QPO ~ Mdot B ~ Mdot, proportional Zhang & Kojim, 2006, MNRAS

kHz QPO Distribution : Twin frequency difference/ratio is not a constant difference Cir X-1 ν1 = ~700. (Hz)(ν2 /1000Hz)b b ~ 1.6 Atoll Source 4U1728 b ~ 1.8 Z Source Sco X-1 Ratio Zhang,Yin,Zhao,et al. 2006,MNRAS

Twin kHz QPO distribution

Twin kHz QPO distribution

Spin Frequency:SAX J1808.4-3658 Millisecond Radio Pulsar, X-ray MSP Bhattacharya and van den Heuvel, 1991 Millisecond Radio Pulsar, X-ray MSP Rule : burst vs. pulsation is exclusive ? Sax J1808.4-3658: 401 Hz (2.49 ms) Binary Parameters of SAX J1804.5-3658 Orbital period: 2 hr Orbital radius: 63 lms Mass function: 3.8× 10-5 Mסּ Magnetosphere radius: 30 km Magnetic field : (2-6)×108 Gauss Chakrabaty and Morgan 1998 Nature Wijnands and van der Klis 1998, Nature

Accreting X-ray millisecond pulsar --- SAX J1808.4-3658 (7 sources) Wijnands and van der Klis, 1998 Nature Wijnands et al 2003 Nature 4 sources by Markwardt et al. 2002a, 2003a, 2003b, Galloway et al. 2002

Radio Pulsar: Magnetic field--period diagram (1) Why B-P ? B evolves ? Recycled ? (2) 716 Hz; ~10^8 G; why not 10^7 G ? PSR: 1750, X-ray NS: 200 magnetar: 5SGR+11AXP MSP: 175 BPSR: 130, recycled LMXB Van den Heuvel 2004, Science

Accretion-powered X-ray PSR, (7),185-599 Hz Radio Millisecond PSR is recycled,Alpar, et al 1982 Nature IGR J00291+5934 598.88 Hz, Markwardt 2004, 7 MSP sources

差频和自旋关系 SAXJ 1808.4-3658,Twin kHz QPOs :700 Hz, 500 Hz;Burst/spin: 401 Hz; Wijnands et al 2003, Nature Burst frequency ~ spin frequency XTE 1807, twin kHz QPO, 191 Hz, Linares , van der Klis, Wijnands 2005 ApJ; F. Zhang,J Qu,C Zhang,W.Chen, T.P. Li, 2006 ApJ

Type-I X-ray Burst Type-I X-ray Burst, Lewin et al 1995/Bildsten 1998 Thermonuclear reaction on accreting NS surface (T/P, spot) Burst rise time: 1 second Burst decay time: 10-100 second Total energy: 1039-40 erg. Eddington luminosity ! 4U1728-34, (363 Hz) Strohmayer et al 1996 362.5 Hz --- 363.9 Hz, in 10 second

Spectrum of Type-I X-ray Burst frequency 4U1702-43, Strohmayer 1996 and Markwardt 1999, van der Klis 2006; Strohmayer and Bildsten 2003

Burst Oscillations

On the burst frequency Burst frequency increases ~ 2 Hz, drift. Decreasing is discovered From hot spot on neutron star kHz QPO separation ~ burst/spin frequency

Spin Frequency Distribution Spin 1122 Hz, Kaaret et al 2006 7+11+4=22 Spin sources 45-1122 Hz Radio MSP:716 Hz Yin et al 2007 AA

kHz QPO & spin relation

Burst and Spin frequency Burst and Spin frequency are similar,401 Hz X 17 burst sources, Muno et al 2004;van der Klis 2006 X-ray pulsars, Wijnands 2004; Chakrabarty 2004 Spin sources=7+(17-2)=22

burst sources, Muno 2004

3rd kHz QPO ? 25 kHz QPO 源

Low frequency QPO---kHz QPO 关系 Belloni et al 2002 ApJ Low frequency QPO< 100 Hz FBO/NBO = 6-20 (Hz) HBO = 15-70 (Hz) Empirical Relation νHBO = 50. (Hz)(ν2 /1000Hz)1.9-2.0 νHBO = 42. (Hz) (ν1/500Hz)0.95-1.05 νqpo = 10. (Hz) (ν1/500Hz) ν1 = 700. (Hz)(ν2 /1000Hz)1.6-2.0

Low-high frequency QPO 关系 Neutron stars Black holes ? White dwarfs, Cvs Zhang et al 2007, PASP Warner 2006 MNARS; Warner & Woudt 2004 MNRAS; Mauche 2002 ApJ + 27 CVs, 5 magnitude orders in QPOs

Black Hole High Frequency QPOs HFQPO: 40-450 (Hz) Constant (stable) in frequency (M/S) Luminosity Pair frequency relation 3:2 Frequency-Mass relation: 1/M 7 BH sources, van der Klis 2006 Jets like Galactic BHs ~10Ms (McClintock & Remillard 2003;2006) Different from those of NS’s GRO J1655-40, XTE J1550-564 XTE 1650-5000, 4U1630-47 XTE 1859-226, H 1743-322 GRS 1915+105, 7 Sources Van der Klis 2006 νk= (1/2π)(GM/r3)1/2 = (c/2πr) (Rs/2r)1/2 νk (ISCO) = 2.2 (kHz) (M/Mסּ) -1 Magnetosphere-disk instability noise: mechanism:?Abramowicz et al 2003 AA; MNRAS ; Wang et al, 2003/06, MNRAS Miller, et al 1998 Cui et al. 1998; Zhang SN et al 1997, APJ

BH QPO - spectral indices, flux, color Zhang GB, et al APJ 2007, swift 1753

~ High Frequency QPOs in Black Hole LMXBs Name BH Mass(Msun) HF QPO (Hz) References GRO J1655-40 ~6 300,450 1,2 XTE J1550-564 ~10 184,276 188,249~276 3,4 5 GRS 1915+105 ~14 41,67 113,165 328 165 6 7(?) 8(?) 9 H 1743-322 ~ 160,240 166,242 10 11 XTE J1859+226 ~9 150~200 12 4U 1630-472 184 100~300 8 13 XTE J1650-500 110~270 14

STELLAR Black Hole—Micro-quasar GRS 1915+105 165 Hz, 14 solar mass 10,000 lyr, 300Hz:450Hz=2:3 Microquasar, Radio jet 6 solar mass/optical

QPO and Break Frequency

Theoretical Consideration Accretion Flow around NS/BH Hard surface ? Strong Gravity: Schwarzschild Radius: Rs=2GM/c2 Innermost Stable Circular Orbit RIsco= 3Rs Strong Magnetic: 108-9 Gauss (Atoll, Z-sources) Beat Model: Kepler Frequency Difference to Spin frequency

QPO Models Miller, Lamb & Psaltis ’ Beat Model, developed from Alpar & Shaham 1985 Nature ; Lamb et al 1985 Nature Abramovicz et al : Model non-linear resonance between modes of accretion disk oscillations HFQPO: Stellar black hole QPO, 3:2 relation Wang et al 2003/06 Titarchuk and cooperators ’ Model transition layer formed between a NS surface and the inner edge of a Keplerian disk, QPO: magnetoacoustic wave (MAW), Keplerian frequency. Low-high frequency relation 0.08 ratio Relativistic precession model by Stella & Vietri 1999

Theoretical Models Beat Model (HBO), νHBO = νkepler - νspin What modulate X-ray Flux ? Why quasi periodic, not periodic ? Parameters: M/R/Spin, B?--Z/Atoll Beat Model (HBO), νHBO = νkepler - νspin νKepler ≈ r-3/2 is the Kepler Frequency of the orbit νspin Constant, is the spin Frequency of the star Alpar, M., Shaham, J., 1985, Nature r ~ 1/Mdot , νHBO ~ Mdot Beat Model for KHz QPO ν2 = νkepler ν1 = νkepler - νspin ∆ν = ν2 - ν1 = νspin Miller, Lamb, Psaltis 1998; Strohmayer et al 1996 Lamb & Miller 2003 …Constant

X-射线源准周期振荡QPO RXTE:罗西X-射线卫星1996年发现 kHz QPO:积累近十年观测结果 中子星 kHz QPO,成对出现 黑洞 QPO,100Hz,3:2 HBO,15-70Hz,互相关联 理论解释: 拍模型 重要意义: 爱因斯坦理论,强引力场 黑洞的视界,最小稳定轨道 中子星质量半径,核物态 中子星磁场演化/结构 机制研究: 阿尔文波振荡模型 间隔常数?NO! 拍模型预言:间隔常数=自旋 Alpar和Shaham,1985,Nature。 Lamb et al 1985, Nature。 Miller et al 1998, ApJ。

进动模型:Einstein’s Prediction: Perihelion Motion of Orbit Perihelion precession of Mercury orbit = 43” /century, near NS, ~10^16 times large

Neutron Star Orbit N. Copernicus ISCO Saturation Einstein’s General Relativity: Perihelion precession Precession Model for KHz QPO, Stella and Vietri, 1999 ν2 = νkepler ν1 = νprecession = ν2 [1 – (1 – 3Rs/r)1/2] ∆ν = ν2 - ν1 is not constant

Theoretical model Problems: Vacuum Circular orbit Test particle Predicted 2 M⊙ 5. 30 sources, NS mass ~ 1.4 solar mass Theoretical model Stella and Vietrie, 1999, Precession model

Lense-Thirring Precession BH precession ? L.Stella, M.Vietri, 1998 Cui et al 1998; Zhang SN et al. 1997 From Einstein GR, frame dragging was first quantitatively stated by W. Lense and H. Thirring in 1918, which is also referred to as the Lense-Thirring effect

Alfven wave oscillation MODEL Zhang 2004 AA; Li & Zhang 2005 ApJ; Zhang et al 2007 AN Keplerian Orbital frequency resonance MHD Alfven wave Oscillation in the orbit ν2 = 1850 (Hz) A X3/2 ν1 = ν2X (1- (1-X)1/2)1/2 A=m1/2/R63/2; X=R/r, m: Ns mass in solar mass R6 is NS radius in 10^6 cm

Migliari, van der Klis, Fender, 2003 MNRAS Boutloukos,van der Klis 2006 ApJ

Neutron Star Mass-Radius Zhang et al 2007 MNRAS AqlX-1, EXO 0748-676 Samples CN1/CN2: normal neutron matter, CS1/CS2: Strange matter CPC: core becomes Bose-Einstein condensate of pions

Fastest Pulsar XTE J1739-285 1122 Hz by Kaaret et al. 2006 Radio pulsar 716 Hz , Hessels et al. 2006 XTE 1739-285, 1122 Hz kHz QPO: 700-850 Hz Quark Star ?

11-year RXTE - where are we now ? 观测,进展较大,QPO关系明确 理论,进展缓慢,很多模型? 物理实验室 强引力广义相对论验证 中子星结构检验核物理 开普勒运动 近星点进动 LT 进动/引力磁 引力红移 黑洞/Kerr 时空 引力波 光线弯曲 质量 半径 核物态(中子/夸克) 磁场 旋转 吸积流动 QPO机制? 数据处理? 新物理?

Discussion and Problems Now, we are standing on the edge of new discovery ? THANKS

Have no X-ray pulsation & type-II X-ray bursts A comparison between high-frequency QPOs in BH LMXBs and those in NS LMXBs QPOs in BH LMXBs QPOs in NS LMXBs Hard spectral Relatively soft Break Have no X-ray pulsation & type-II X-ray bursts Have X-ray pulsation &type-II X-ray bursts ~3:2 ratio Not constant Relatively stable Systemically change with Luminosity 1/M scaling ? Spin? No observational evidence. Spin! X-ray pulsation & type-II X-ray bursts