CMOS pixel sensors & PLUME operation principles

Slides:



Advertisements
Similar presentations
1 Annealing studies of Mimosa19 & radiation hardness studies of Mimosa26 Dennis Doering* 1, Samir Amar-Youcef 1,3,Michael Deveaux 1, Melissa Domachowski.
Advertisements

M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
FSBB-M and FSBB-A: Two Large Scale CMOS Pixel Sensors Building Blocks Developed for the Upgrade of the Inner Tracking System of the ALICE Experiment Frédéric.
Monolithic Active Pixel Sensors M. Deveaux, Goethe University Frankfurt and CBM on behalf of the PICSEL group IPHC Strasbourg (Marc Winter et al.). (CPS.
L. Greiner1PXL Sensor and RDO review – 06/23/2010 STAR Heavy Flavor Tracker Overview With parameters pertinent to the PXL Sensor and RDO design.
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
The CBM-MVD prototype: Realization & beam test Michal Koziel Goethe-Universität, Frankfurt 1 Detector Workshop March 25th-26th 2013 at.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
Study of FPCCD Vertex Detector 12 Jul. th ACFA WS Y. Sugimoto KEK.
Fine Pixel CCD Option for the ILC Vertex Detector
Irfu saclay 3D-MAPS Design IPHC / IRFU collaboration Christine Hu-Guo (IPHC) Outline  3D-MAPS advantages  Why using high resistivity substrate  3 types.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
Development of CMOS Pixel sensors (CPS) for vertex detectors in present and future collider experiments On behalf of IPHC-Strasbourg group (CNRS & Université.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
ALICE Inner Tracking System at present 2 2 layers of hybrid pixels (SPD) 2 layers of silicon drift detector (SDD) 2 layers of silicon strips (SSD) MAPs.
IPHC-LBNL meeting 3-5 April 2008 Radiation damage in the STAR environment and performance of MAPS sensors Compilation of different test results mostly.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
M. Deveaux, CBM-Collaboration-Meeting, 25 – 28. Feb 2008, GSI-Darmstadt Considerations on the material budget of the CBM Micro Vertex Detector. Outline:
Improvement of ULTIMATE IPHC-LBNL September 2011 meeting, Strasbourg Outline  Summary of Ultimate test status  Improvement weak points in design.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
COMETH*: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor Yang ZHOU, Jérôme Baudot, Christine Hu-Guo, Yann Hu, Kimmo Jaaskelainen,
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
A. Dorokhov, IPHC, Strasbourg, France 1 Description of pixel designs in Mimosa22 Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
ULTIMATE: a High Resolution CMOS Pixel Sensor for the STAR Vertex Detector Upgrade Christine Hu-Guo on behalf of the IPHC (Strasbourg) CMOS Sensors group.
Mistral Christine Hu-Guo on behalf of the IPHC (Strasbourg) PICSEL team Outline  MISTRAL (inner layers)  Circuit proposal  Work plan  Sensor variant.
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Ideas on MAPS design for ATLAS ITk. HV-MAPS challenges Fast signal Good signal over noise ratio (S/N). Radiation tolerance (various fluences) Resolution.
Fast Full Scale Sensors Development IPHC - IRFU collaboration MIMOSA-26, EUDET beam telescope Ultimate, STAR PIXEL detector Journées VLSI 2010 Isabelle.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
MAPS for ALICE Upgrade and Beyond Frédéric Morel (on behalf of PICSEL and ALICE teams of IPHC Strasbourg) Outline  Starting point: STAR-PXL  MISTRAL.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
Further improvement of the TC performances Marie GELIN on behalf of IPHC - Strasbourg and IRFU – Saclay Investigation of a new substrate (High Resistivity)
ECFA Durham, September Recent progress on MIMOSA sensors A.Besson, on behalf of IReS/LEPSI : M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
H.-G. Moser Halbleiterlabor der Max-Planck- Institute für Physik und extraterrestrische Physik VIPS LP09, Hamburg August 18, R&D on monolithic and.
SPiDeR  Status of SPIDER Status/Funding Sensor overview with first results –TPAC –FORTIS –CHERWELL Beam test 09 Future.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
3D CMOS monolithic 3-bit resolution pixel sensor with fast digital pipelined readout Olav Torheim, Yunan Fu, Christine Hu-Guo, Yann Hu, Marc Winter.
Dima Maneuski, Advances in rad-hard MAPS 2016, Birmingham
Summary of Strasbourg Meeting
Requirements and Specifications for Si Pixels Sensors
ADvanced MOnolithic Sensors for
Overall sensor architecture designs achieved Christine Hu-Guo (on behalf of the PICSEL team of IPHC-Strasbourg) Targeting.
The CBM sensor digitizer
Radiation tolerance of MAPS
Integration and alignment of ATLAS SCT
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
CMOS Pixel Sensors for ILC Related Vertexing & Tracking Devices Christine Hu-Guo (on behalf of the PICSEL team of IPHC-Strasbourg) Contents Overview.
Prochaines Etapes des Capteurs CMOS Christine Hu-Guo (IPHC)
R&D of CMOS pixel Shandong University
Presentation transcript:

CMOS pixel sensors & PLUME operation principles J. Baudot for the IPHC-PICSEL group baudot@in2p3.fr IN2P3-KEK Belle II and BEAST meeting Strasbourg, 19-20 January 2015 CMOS pixel sensors Counting rate Radiation tolerance PLUME ladder

CMOS pixel sensors @ IPHC Motivations ILC vertex detector no trigger ➙ continuous integration performance driven high granularity low material budget The “dimensional curse” Granularity against read-out speed data throughput Potential solution get out only the relevant information In space & time Power dissipation against Material budget also shared by Heavy Ion Colliders Single point res. Integra. time TID Fluence neq/cm2 Temp. STAR - PXL ~ 5 µm ≲ 200 µs 150 kRad 3.1012 30 ∘C ALICE – ITS (in÷out) ~ 5÷10 µm 10-30 µs 700÷15 kRad 1.1013 CBM - MVD ≲ 10 MRad 1.1014 ≪0 ∘C ILD - VXD ≲ 3 µm ≲ 10 µs O(100 kRad) O(1011) ≲ 30 ∘C J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

MIMOSAs architecture Rolling-shutter = power reduction One row powered at a time Parallel column read-out ➙ speed In-pixel double sampling ➙ column-level discrimination Continuously sensitive Read-out time = integration time 0-suppression = data compression Encode “fired pattern” address 1D: SUZE-01/03 2D: SUZE-02 Winning strategy if size of fired addresses < # pixels % level occupancy required Synchronous read-out Potential accelerations More rows read simultaneously Enlarged row height In-pixel discrimination ➡ AROM architecture J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

CPS proposed for BEAST-II MIMOSA-26 (2008) AMS 0.35 µm Sensitive layer: 15 µm thick resistivity > 0.4 kΩ.cm Power dissipation 350 mW/cm2 Spatial resolution ~ 3 µm MISTRAL (expected Q4-2015) TowerJazz 0.18 µm Sensitive layer: 30 µm thick resistivity 1÷5 kΩ.cm Power dissipation ~ 100 mW/cm2 Spatial resolution < 10 µm MISTRAL 832x208 ~ 0.2 Mpixels Pitch 36x62.5 µm2 ➞ Sensitive area 13.0x30.0 mm2 ➞ Readout time 20 µs PRELIMINARY J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

Counting rate in MIMOSAs MIMOSA features reminder: CDS in pixel / binary signal / synchronous rolling-shutter + 0-suppression + output Pixel limitation? One MIP per integration time per pixel MIMOSA-26: 10 MHz/cm2 Read-out limitations Various information bottlenecks Line max # patterns Memory size Output data throughput Information size ➙ # hits? Depends on hit local density Depends on pixel multiplicity Assumptions (for designed goals with occupancy ≪ 1%) MIMOSA-26: ~200 hits/frame ➙ ~106 hits/cm2/s MISTRAL: ~100(?) hits/frame ➙ ~(?).106 hits/cm2/s (designed for tracker outer layers) J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

Pixel multiplicity in clusters WARNING: our CPS are not fully depleted Thermal motion rather than electric field drift density of collection node ➚ (smaller pitch) ➡ cluster size➘ Measured with low resistivity sensitive layer (14 µm thick): 10 µm pitch ⬄ <pixel mult.>~2.9 against 40 µm pitch ⬄ <pixel mult.>~3.4 Collection node size ➚ ➡ cluster size➘ Sensitive layer thickness ➚ ➡ cluster size➚ Sensitive layer resistivity ➚ ➡ cluster size➘ Very thin sensitive layer (15-30 µm) Impact of incident angle mitigated Example: MIMOSA-26, high resistivity 15 µm sens. layer tan(60∘)/tan(36∘)=2.4 5.7/3.3 = 1.7 J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

Ionizing radiation tolerance Mechanism on collection diode Charges (from ionization) accumulated in oxide ➡ leakage current➚➡ noise ➚ Treatment µ-circuits non-affected Driving parameters S/N problem Noise cannot be helped For fixed integration time For fixed temperature Enlarge Signal as much as poss. Collecting node size Pixel size Sensitive layer thickness & resistivity Tcoolant=20∘C Observations AMS 0.35 µm Validated to 300 kRad (STAR requirement) Not much known beyond BUT “good behaviour” @ 1 Mrad for CPS in technology 0.35 µm XFAB TowerJazz 0.18 µm 3 Mrad OK for S/N (on analogue output sensor) D.Doering, U.Frankfurt J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

MISTRAL integration time Nominal mode 208 rows Row read-out time 160 to 200 ns Integration time = 16.6 to 20.8 µs 0-suppression logic treats 208 rows synchronously with integration time Output memory (100 hits) read once after 208 rows treated Specific BEAST-2 mode Select 208/8 = 26 rows (1.6 mm) partial rolling-shutter Row read-out time unchanged (2 at a time) Effective integration time = 2.1-2.6 µs without dead-time 0-suppression logic sees 8 times the same 26 rows Output memory delivers 8 times the 8 rows content after 208 rows 100 hits/208(=8x26) rows ➙ ~108 hits/s/cm2 J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

CPS proposed for BEAST-II MIMOSA-26 (2008) AMS 0.35 µm Sensitive layer: 15 µm thick resistivity > 0.4 kΩ.cm Power dissipation 350 mW/cm2 Spatial resolution ~ 3 µm Validated for TID~3kGy will operate beyond that point with unknown degradation MISTRAL (expected Q4-2015) TowerJazz 0.18 µm Sensitive layer: 30 µm thick resistivity 1÷5 kΩ.cm Power dissipation ~ 100 mW/cm2 Spatial resolution < 10 µm Technology validated for TID~3MRad MISTRAL 832x208 ~ 0.2 Mpixels Pitch 36x62.5 µm2 ➞ Sensitive area 13.0x30.0 mm2 ➞ Readout time 20 µs (2µs for 26 rows) PRELIMINARY J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

PLUME Concept Production Beam test @ SPS (2011) Double-sided layer of pixelated sensors Designed driven by ILC-VXD Air cooled Collab: Bristol, DESY, IPHC Production PLUME-1: MIMOSA-26 sensors Material budget 0.6% X0 2 functional ladders PLUME-2 (BEAST-2 proposition baseline) Material budget 0.35% X0 ≲10 ladders in production PLUME-3 (dedicated to BEAST-2) MISTRAL sensors Material budget guess ≲ 0.5 % X0 Few ladders goal Beam test @ SPS (2011) Incident angle resolution: 0.2 degrees at 40 degrees J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

Conclusion Summary Outlook Current (or nearly) available sensors have designed parameters driven by other experiments Assets Granularity Continuous integration Low material budget Thorough testing Outlook Designing a BEAST- phase – II specific sensor not out of the question Potential optimization Integration time (few µs over large surface) Occupancy (few %) BUT 20 ns time-stamping or gating mode unreachable (for next year) Readiness by Q1-2017 at the earliest J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

Backups J.Baudot - CPS and PLUME operation principles - IN2P3-KEK BEAST meeting 19-20 January 2015

In-pixel double sampling