CSE 140 Lecture 12 Combinational Standard Modules

Slides:



Advertisements
Similar presentations
Digital Design: Combinational Logic Blocks
Advertisements

Modular Combinational Logic
Documentation Standards
Functions and Functional Blocks
Decoders/DeMUXs CS370 – Spring Decoder: single data input, n control inputs, 2 outputs control inputs (called select S) represent Binary index of.
Speical purpose Encoders/Comparators
1 KU College of Engineering Elec 204: Digital Systems Design Lecture 9 Programmable Configurations Read Only Memory (ROM) – –a fixed array of AND gates.
1 CS 140 Lecture 12 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 11 Professor CK Cheng 5/09/02. Part III - Standard Modules Decoder, Encoder, Mux, DeMux, Shifter, Adder, Multiplexer Interconnect: Decoder,
1 CS 140 Lecture 14 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego Some slides from Harris and Harris.
CS 140 Lecture 13 Combinational Standard Modules Professor CK Cheng CSE Dept. UC San Diego 1.
Chapter 7. Register Transfer and Computer Operations
CS 140 Lecture 12 Professor CK Cheng 11/07/02. Part III - Standard Modules Decoder, Encoder, Mux, DeMux, Shifter, Adder, Multiplexer Interconnect: Decoder,
1 Designing with MSI Documentation Standards  Block diagrams first step in hierarchical design  Schematic diagrams  Timing diagrams  Circuit descriptions.
1 CSE20 Lecture 16 Boolean Algebra: Applications Professor CK Cheng CSE Dept. UC San Diego 1.
Multiplexers, Decoders, and Programmable Logic Devices
Combinational Logic1 DIGITAL LOGIC DESIGN by Dr. Fenghui Yao Tennessee State University Department of Computer Science Nashville, TN.
Multiplexer MUX. 2 Multiplexer Multiplexer (Selector)  2 n data inputs,  n control inputs,  1 output  Used to connect 2 n points to a single point.
Part 2: DESIGN CIRCUIT. LOGIC CIRCUIT DESIGN x y z F F = x + y’z x y z F Truth Table Boolean Function.
Shannon’s Expansion Muxes and Encoders. Tri-State Buffers  A tri-state buffer has one input x, one output f and one control line e Z means high impedance,
1 CSE 140 Lecture 12 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego.
Combinational Logic Design
Digital Computer Concept and Practice Copyright ©2012 by Jaejin Lee Logic Circuits I.
Digital Computer Concept and Practice Copyright ©2012 by Jaejin Lee Logic Circuits I.
WEEK #9 FUNCTIONS OF COMBINATIONAL LOGIC (DECODERS & MUX EXPANSION)
Kuliah Rangkaian Digital Kuliah 6: Blok Pembangun Logika Kombinasional Teknik Komputer Universitas Gunadarma.
EE2420 – Digital Logic Summer II 2013 Hassan Salamy Ingram School of Engineering Texas State University Set 12: Multiplexers, Decoders, Encoders, Shift.
CSE 140 Lecture 12 Combinational Standard Modules CK Cheng CSE Dept. UC San Diego 1.
Multiplexors Decoders  Decoders are used for forming separate signals for different combination of input signals.  The multiplexer circuit is a digital.
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Multiplexers.
1 CSE 140 Lecture 11 Standard Combinational Modules CK Cheng CSE Dept. UC San Diego.
Multiplexers & Decoders By: Jason Pitts CS 147 Spring 2010.
CSE 140 Lecture 13 Combinational Standard Modules Professor CK Cheng CSE Dept. UC San Diego 1.
Chapter4: Combinational Logic Part 4 Originally By Reham S. Al-Majed Imam Muhammad Bin Saud University.
CSE 140 Lecture 12 Combinational Standard Modules CK Cheng CSE Dept. UC San Diego 1.
This chapter in the book includes: Objectives Study Guide
Lecture 3: Incompletely Specified Functions and K Maps
COSC3330 Computer Architecture Lecture 2. Combinational Logic
CSE 140 Lecture 14 System Designs
Multiplexer.
Multiplexers and Demultiplexers,
Combinational Circuit Design
Lecture 9 Logistics Last lecture Today HW3 due Wednesday
Dr. Clincy Professor of CS
This chapter in the book includes: Objectives Study Guide
CSE 140 Lecture 12 Combinational Standard Modules
CSE 140 Lecture 11 Standard Combinational Modules
Lecture 3: Incompletely Specified Functions and K Maps
CS M51A/EE M16 Winter’05 Section 1 Logic Design of Digital Systems Lecture 15 March 9 W’05 Yutao He 4532B Boelter Hall
CSCE 211: Digital Logic Design
CSCE 211: Digital Logic Design
ECE434a Advanced Digital Systems L02
Lecture 8 Logistics Last lecture Last last lecture Today
Programmable Configurations
Lecture 10 Logistics Last lecture Today
CS 140 Lecture 14 Standard Combinational Modules
CSE 140 Lecture 14 System Design
Dr. Clincy Professor of CS
CSCE 211: Digital Logic Design
Part I Background and Motivation
CSCE 211: Digital Logic Design
CSE 140 Lecture 14 Standard Combinational Modules
Logic Circuits I Lecture 3.
CSE 140 Lecture 3 Combinational Logic: Implementation
Overview Last lecture Timing; Hazards/glitches
CS 140 Lecture 13 Professor CK Cheng 11/12/02.
ECE2030 HW-6.
Lecture 3: Incompletely Specified Functions and K Maps
CSE 140 Lecture 11 Standard Combinational Modules
Example of a Combinatorial Circuit: A Multiplexer (MUX)
Presentation transcript:

CSE 140 Lecture 12 Combinational Standard Modules CK Cheng CSE Dept. UC San Diego

Part III. Standard Modules Interconnect Modules: 1. Decoder, 2. Encoder 3. Multiplexer, 4. Demultiplexer

Multiplexer Definition Logic Diagram Application

Interconnect: Decoder, Encoder, Mux, DeMux Processors P1 Memory Bank Mux P2 Pk Demux Decoder Data Address Address k Address 2 Address 1 Data 1 Data k Arbiter n n-m m 2m Decoder: Decode the address to assert the addressed device Mux: Select the inputs according to the index addressed by the control signals

iClicker: Multiplexer Definition A device that interleaves two or more activities A communications device that combines several signals for transmission over a single medium A logic circuit that sends one of several inputs out over a single output channel. The circuit that uses a common communications channel for sending two or more messages or signals. All of the above

3. Mux (Multiplexer) Definition: A digital module that selects one of data inputs according to the binary address of the selector. E y D2n-1-D0 (Data input) Sn-1,0 (Selector or Address) Description If E = 1 y = Di where i = (Sn-1, .. , S0) Else y = 0

Multiplexer (Mux): Definition Selects between one of N inputs to connect to the output. log2N-bit select input – control input E: Enable y: Output S: Selector or Address D0 D1 1 Data input

PI Q: What is the output of the following MUX? 1 Can’t say 1 Can’t say E =1 y S=1 1

Multiplexer (Mux): Definition Selects between one of N inputs to connect to the output. log2N-bit select input – control input Example: 2:1 Mux

Multiplexer Definition: 4-input mux En D0 S1 S0 y D1 1 y D2 2 D3 3 S1 S0

Multiplexer: Logic Diagram Logic gates Sum-of-products Tristates For an N-input mux, use N tristates Turn on exactly one to select the appropriate input

Multiplexer Application Mux for a Boolean function with truth table as input Building blocks of FPGA (Field Programmable Gate Array). iClicker: For the logic diagram on left, output Y is AB (AB)’ A+B (A+B)’ None of the above

Multiplexer Application: universal set {Mux} We use selector to decompose the function into smaller functions (less number of variables), which follows Shannon’s expansion. We simplify the decomposed functions using K-map, which follows consensus theorem.

Multiplexer Application: universal set {Mux} Example 1: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with an 8-input Mux. id abc f 000 1 001 2 010 - 3 011 4 100 5 101 6 110 7 111 En y a b c S2 S1 S0 1 2 3 4 5 6 7

Example 2: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 4-input Muxes. y a b S1 S0 1 2 3 ab c=0 c=1 D 00 D0 01 D1 10 D2 11 D3

Example 3: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 2-input Muxes. 00 01 10 11 D(b,c) 1 - D0 D1 E 1 a y

Example 3: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 2-input Muxes. 00 01 10 11 D(b,c) 1 - D0 D1 E b’ 1 a y D0 (b,c) = b’ D1 (b,c) = bc c=0 1 - c=1 b=0 b=1 c=0 c=1 1 b=0 b=1 D1 (b,c)

Example 3: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 2-input Muxes. D1 (b,c) b\c 1 D D0= D1= E b’ 1 a y

Example 3: Given f (a,b,c) = Σm (0,1,7) + Σd(2), implement with 2-input Muxes. D1 (b,c) b\c 1 D D0=0 D1=c E b’ 1 a b y c

Example 4: Given f (a,b,c) = Σm (0,2,4,7) + Σd(3,5), implement with 2-input Muxes. 00 01 10 11 D 1 - D0 D1 E 1 a y D0(b,c) D1(b,c)

4. Demultiplexers E yi = x if i = (Sn-1, .. , S0) & E=1 yi = 0 otherwise y2n-1 -y0 x S(n-1,0) Control Input

Shifters Logical shifter: shifts value to left or right and fills empty spaces with 0’s Ex: 11001 >> 2 = 00110 Ex: 11001 << 2 = 00100 Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb). Ex: 11001 >>> 2 = 11110 Ex: 11001 <<< 2 = 00100 Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end Ex: 11001 ROR 2 = 01110 Ex: 11001 ROL 2 = 00111

Shifter s d xn x0 x-1 xn-1 yn-1 y0 s / n l / r yi = xi-1 if E = 1, s = 1, and d = L = xi+1 if E = 1, s = 1, and d = R = xi if E = 1, s = 0 = 0 if E = 0 s d yi E 1 3 2 1 0 xi+1 xi-1 xi Can be implemented with a mux

Shifter Design

Barrel Shifter shift x s0 s1 s2 0 1 0 1 0 1 O or 1 shift O or 2 shift 0 1 0 1 0 1 s0 O or 1 shift s1 O or 2 shift 0 1 0 1 0 1 0 1 0 1 s2 O or 4 shift y 0 1 0 1 0 1 0 1 0 1 0 1

Shifters as Multipliers and Dividers A left shift by N bits multiplies a number by 2N Ex: 00001 << 2 = 00100 (1 × 22 = 4) Ex: 11101 << 2 = 10100 (-3 × 22 = -12) The arithmetic right shift by N divides a number by 2N Ex: 01000 >>> 2 = 00010 (8 ÷ 22 = 2) Ex: 10000 >>> 2 = 11100 (-16 ÷ 22 = -4)