Pedestal Confinement and Stability in JET-ILW ELMy H-modes

Slides:



Advertisements
Similar presentations
TFE Th Loarer – SEWG – 12 September Euratom Th Loarer V Philipps 2, J Bucalossi 1, D Brennan 3, J Brzozowski 4, N Balshaw 3, R Clarke 3, G Esser.
Advertisements

1/15 D. C. McDonald et al, Particle and Energy Transport in Dedicated  *,  and  * Scans in JET ELMy H-modes, IAEA - 20th Fusion Energy Conference, Vilamoura,
Stability, Transport, and Conrol for the discussion Y. Miura IEA/LT Workshop (W59) combined with DOE/JAERI Technical Planning of Tokamak Experiments (FP1-2)
1 J-W. Ahn a H.S. Han b, H.S. Kim c, J.S. Ko b, J.H. Lee d, J.G. Bak b, C.S. Chang e, D.L. Hillis a, Y.M. Jeon b, J.G. Kwak b, J.H. Lee b, Y. S. Na c,
Emmanuel JoffrinXXth Fusion Energy Conference, November The « hybrid » scenario in JET: towards its validation for ITER E. Joffrin, A. C. C. Sips,
R Sartori - page 1 20 th IAEA Conference – Vilamoura Scaling Studies of ELMy H-modes global and pedestal confinement at high triangularity in JET R Sartori.
IAEA - FEC2004 // Vilamoura // // EX/4-5 // A. Staebler – 1 – A. Staebler, A.C.C Sips, M. Brambilla, R. Bilato, R. Dux, O. Gruber, J. Hobirk,
PFE-033 TORE SUPRA 17th IEEE NPSS 2010 Real-Time Conference P. Spuig et al. Advanced Electronics for Tokamak Far Infrared Interferometers P. J. Spuig 1,
G Saibene - 1 Dimensionless Identity Experiments in JT-60U and JET G Saibene 1, N Oyama 2, Y Andrew 3, JG Cordey 3, E de la Luna 4, C Giroud 3, K Guenther.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U N. Oyama 1), Y. Sakamoto 1), M. Takechi 1), A. Isayama.
H. D. Pacher 1, A. S. Kukushkin 2, G. W. Pacher 3, V. Kotov 4, G. Janeschitz 5, D. Reiter 4, D. Coster 6 1 INRS-EMT, Varennes, Canada; 2 ITER Organization,
11 th European Fusion Physics Conference, Aix-en-Provence, France, Samuli Saarelma, Edge stability in tokamak plasmas Edge stability in tokamak.
Predictive Integrated Modeling Simulations Using a Combination of H-mode Pedestal and Core Models Glenn Bateman, Arnold H. Kritz, Thawatchai Onjun, Alexei.
1 Garching, 20/3 2009EFDA Fuelling Meeting A Ekedahl 1, M Goniche 1, G Granucci 2, J Mailloux 3, V Pericoli 4, V Petrzilka 5, K Rantamäki 6, JET-EFDA contributors,
H. Urano, H. Takenaga, T. Fujita, Y. Kamada, K. Kamiya, Y. Koide, N. Oyama, M. Yoshida and the JT-60 Team Japan Atomic Energy Agency JT-60U Tokamak: p.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
ELM Control Using External Perturbation Fields on JET Y Liang, JET-EFDA contributors Joint Pedestal/SOL ITPA Meeting Garching (7-10 May), Germany.
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
O. Sauter Effects of plasma shaping on MHD and electron heat conductivity; impact on alpha electron heating O. Sauter for the TCV team Ecole Polytechnique.
Japan Atomic Energy Agency, Naka Fusion Institute H モード周辺プラズマの無次元量解析 Japan Atomic Energy Agency 浦野 創 原子力機構 那珂核融合研究所.
High  p experiments in JET and access to Type II/grassy ELMs G Saibene and JET TF S1 and TF S2 contributors Special thanks to to Drs Y Kamada and N Oyama.
1 Plasma Rotation and Momentum Confinement – DB ITPA - 1 October 2007 by Peter de Vries Plasma Rotation and Momentum Confinement Studies at JET P.C. de.
JET-ILW pedestals, known knowns, known unknowns and unknown unknowns S. Saarelma CCFE, UK.
1Peter de Vries – ITBs and Rotational Shear – 18 February 2010 – Oxford Plasma Theory Group P.C. de Vries JET-EFDA Culham Science Centre Abingdon OX14.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
O-36, p 1(10) G. Arnoux 18 th PSI, Toledo, 26-30/05/2008 Divertor heat load in ITER-like advanced tokamak scenarios on JET G.Arnoux 1,(3), P.Andrew 1,
Angelo A. Tuccillo EX/ th IAEA Fusion Energy Conference, Vilamoura, 1-6 November 2004 Development on JET of Advanced Tokamak Operations for ITER.
Improved performance in long-pulse ELMy H-mode plasmas with internal transport barrier in JT-60U N. Oyama, A. Isayama, T. Suzuki, Y. Koide, H. Takenaga,
ERO modelling of Be erosion and light emission at JET ILW D.Borodin 1, M.Stamp, A.Kirschner 1, C.Björkas 1,2, S.Brezinsek 1, J.Miettunen 3, D.Matveev 1,
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
LI et al. 1 G.Q. Li 1, X.Z. Gong 1, A.M. Garofalo 2, L.L. Lao 2, O. Meneghini 2, P.B. Snyder 2, Q.L. Ren 1, S.Y. Ding 1, W.F. Guo 1, J.P. Qian 1, B.N.
1 Peter de Vries – ITPA T meeting Culham – March 2010 P.C. de Vries 1,2, T.W. Versloot 1, A. Salmi 3, M-D. Hua 4, D.H. Howell 2, C. Giroud 2, V. Parail.
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
Dynamic fuel retention and release under ITER like wall conditions in JET V. Philipps 1, T. Loarer 2, M. Freisinger 1, H.G.Esser 1, S. Vartanian 2, U.
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
M Valisa 1 25 th IAEA FEC, St Petersburg Oct 2014 Heavy Impurity Transport in the Core of JET Plasmas M Valisa C Angioni 2, R. Bilato 2, F J Casson.
L.R. Baylor 1, N. Commaux 1, T.C. Jernigan 1, S.J. Meitner 1, N. H. Brooks 2, S. K. Combs 1, T.E. Evans 2, M. E. Fenstermacher 3, R. C. Isler 1, C. J.
Y Andrew 1 (14) Transport and Confinement ITPA meeting October 2008 H-mode Access on JET Y Andrew and JET EFDA Contributors UKAEA- Fusion Transport.
Impurity transport characterisation JET operational scenarios
Impact of low-Z impurities on the L-H threshold in JET
Melting of Tungsten by ELM Heat Loads in the JET Divertor
Compatibility of high performance scenarios with ILW
24th IAEA Fusion Energy Conference, San Diego, USA, October 8-13, 2012
EU DEMO Design Point Studies
11th IAEA Technical Meeting on H-mode Physics and Transport Barriers" , September, 2007 Tsukuba International Congress Center "EPOCHAL Tsukuba",
Generation of Toroidal Rotation by Gas Puffing
Pedestal Confinement and Stability in JET-ILW ELMy H-mode Scenarios
Pellet injection in ITER Model description Model validation
S. Coda for the TCV team and the EUROfusion MST1 team
Fuel Retention Studies with the ITER-like Wall in JET
L-H power threshold and ELM control techniques: experiments on MAST and JET Carlos Hidalgo EURATOM-CIEMAT Acknowledgments to: A. Kirk (MAST) European.
2/13 Introduction Knowledge of the influence of the hydrogen isotope on H-mode confinement is essential for accurately projecting the energy confinement.
A.D. Turnbull, R. Buttery, M. Choi, L.L Lao, S. Smith, H. St John
N. Oyama, H. Urano, Y. Sakamoto
The effect of ELM pacing by vertical kicks on the access to stationary H-mode with H98~1 on JET E. de la Luna 24th.
Scenario development for DT operation at JET
Plasma shape and fueling dependence on small ELM regimes in TCV and AUG B. Labit1 T. Eich2 G. Harrer3, M. Bernert2, H. De Oliveira1, M. Dunne2, L. Frassinetti4,
T. Morisaki1,3 and the LHD Experiment Group
Validation of theory based transport models
Non-Local Effects on Pedestal Kinetic Ballooning Mode Stability
Max-Planck Institut für Plasmaphysik Garching
New Results for Plasma and Coil Configuration Studies
New High Performance “Super H-Mode” Regime Predicted by EPED, Observed on DIII-D Snyder TH/2-2 EPED model combines peeling-ballooning and KBM physics to.
20th IAEA Fusion Energy Conference,
Enabling research pedestal project, kick-off meeting
T. Morisaki1,3 and the LHD Experiment Group
Automatic Analysis of Edge Pedestal Gradient Degradation during ELMs
Core Density Peaking Experiments in JET, DIII-D and C-Mod in Various Operational Scenarios  Driven by Fueling or Transport? Tuomas Tala.
No ELM, Small ELM and Large ELM Strawman Scenarios
Presentation transcript:

Pedestal Confinement and Stability in JET-ILW ELMy H-modes EX/3-3: Pedestal Confinement and Stability in JET-ILW ELMy H-modes CF Maggi Max Planck Institut für Plasmaphysik, Garching, Germany 25th IAEA FEC Conference, St Petersburg, Russian Federation, 2014

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK Acknowledgements S. Saarelma1, M. Beurskens1, C. Challis1, I. Chapman1, E. de la Luna2, J. Flanagan1, L. Frassinetti3, C. Giroud1, J. Hobirk4, E. Joffrin5, M. Leyland6, P. Lomas1, C. Lowry7, G. Maddison1, J. Mailloux1, I. Nunes8, F. Rimini1, J. Simpson1, A.C.C. Sips7, H. Urano9 and JET Contributors*   JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK 1CCFE, Culham Science Centre, Abingdon OX14 3DB, UK 2Asociacion CIEMAT, Madrid, Spain 3Association VR, Fusion Plasma Physics, KTH, SE-10044 Stockholm, Sweden 4Max Planck Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany 5CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France 6York Plasma Institute, Department of Physics, University of York, York YO10 5DD, UK 7European Commission, B1049 Brussels, Belgium 8Associação IST, Instituto Superior Técnico, Av Rovisco Pais, 1049-001 Lisbon, Portugal 9Japan Atomic Energy Agency, 801-1 Muko-yama, Naka, Ibaraki 311-0193, Japan *See the Appendix of F. Romanelli et al., Proc. 25th IAEA FEC 2014, St Petersburg, Russian Federation

Confinement reduction in pedestal In JET-ILW, H-mode operation needs to be compatible with W control Lower Te,PED in initial phase of JET-ILW at all densities  Confinement loss is dominantly in pedestal N2 seeding in high d H-modes allows recovery of Te,PED to values approaching JET-C JET-C Low d High d 2012 JET-ILW High & Low d High d + N2 seeding [Beurskens, PPCF 2013] [Giroud, Nucl. Fusion 2013] (2.4-2.6 MA / 2.3-2.7 T, PNBI = 12-16 MW), bN ~ 1.2 Similar pPED at low and high d in JET-ILW at low bN (~ 1.2)

Outline Experiments in 2013-2014 with the JET-ILW have investigated the pedestal confinement and stability with respect to: Triangularity Beta Neutrals (D and low-Z impurities)

Triangularity alone does not recover pedestal height j high-d low-d Operational point at low Te,PED 2014 Lower Te,PED  Higher n*PED  lower bootstrap current  plasma shaping barely affects the achievable pedestal height Similar pPED at low and high d de la Luna, EX/P5-29 Triangularity alone does not recover pedestal height

Pedestal pressure and beta high-d low-d high-d, high bp p’ j Low D2 gas injection Increasing power/beta increases pPED both at low and high d At low beta similar pedestal pressures At high d, stronger increase in pPED with power at constant density Challis, EX/9-3

Pedestal stability consistent with P-B Increasing core pressure stabilises ballooning modes due to Shafranov shift, which raises P-B boundary Pedestals limited by intermediate-n P-B instabilities before type I ELM crash, both at low and high d Low D2 gas injection Challis, EX/9-3

Power scans at higher gas rates Higher D2 gas rate, typical of JET-ILW steady H-modes 1.4MA /1.7T, Low triangularity Lower bN at higher D2 gas rate Type I ELMs Lower pPED at larger gas rate (Psep = Pheat – Prad,bulk)

Peeling-Ballooning stability At low gas rates, pedestals are at P-B boundary At high gas rates, pedestals are stable to P-B modes at higher beta All type I ELMy H-modes Weaker increase of pedestal pressure with power at high D2 gas rates is not consistent with peeling-ballooning model

Varying the plasma neutral content Neutral D content increases when D2 injection rate is increased  W control tool Divertor configuration is varied from C/C or V/H  C/V (pumping efficiency + neutrals recirculation to main chamber) V/H C/C C/V Low d Major Radius [m] Height [m] 2.2 2.4 2.6 2.8 3.0 -1.2 -1.4 -1.6 -1.8 Cryopump [Tamain, PSI 2014], [Frassinetti, EPS 2014] Joffrin, EX/P5-40

Pedestal pressure and neutrals C/C: good pumping + lower neutral content  ne,PED , Te&i,PED  C/V: good pumping + higher neutral content  ne,PED , low Te&i,PED V/H C/C C/V Low d Major Radius [m] Height [m] 2.2 2.4 2.6 2.8 3.0 -1.2 -1.4 -1.6 -1.8 Cryopump de la Luna, EX/P5-29 Joffrin, EX/P5-40

In C/C, H98 ~ 1 and bN ~ 1.8 at 2.5MA V/H  C/C Increase of Wth at similar pPED but lower collisionality ne ne normalized Te Te normalized pe pe normalized [Frassinetti, EPS 2014]

In C/C, H98 ~ 1 and bN ~ 1.8 at 2.5MA V/H  C/C Increase of Wth at similar pPED but lower collisionality ne ne normalized Te Te normalized V/H  C/V Low pedestal and core pressure pe pe normalized [Frassinetti, EPS 2014]

At high d N2 seeding increases Te,PED 2.5MA/2.7T d = 0.4 Increase of Te,ped is independent of divertor configuration Effect on density depends on divertor configuration Increase of Te,PED with N2 is weaker at low d The underlying physics process is not yet understood Giroud, EX/P5-25

Pedestal structure with D2 and N2 2.5MA/2.7T, High Triangularity, V/H Configuration At high gas rates, challenge for KBM based EPED model D2 N2 With increasing D2 rate, pressure gradient decreases and width increases at constant bpol With increasing N2, temperature pedestal widens and peak density gradient increases [Leyland, Nucl. Fusion, accepted]

Conclusions The changeover from JET-C to JET-ILW has forced us to re-optimize pedestal confinement and stability What we understand within the P-B framework and EPED model: Stabilizing effects of beta and plasma shaping at low D2 gas rates What we still need to understand in order to advance our predictive capability of the pedestal height: Physics process through which D neutrals degrade Te,PED (inter-ELM transport?...) Physics process through which N2 impurities increase Te,PED

Back-up slides

P-B stability analysis #87341 Distance of operational point to P-B boundary is length of arrow, calculated at fixed pedestal width and increasing Te,PED

Gyrokinetic analysis of the pedestal Local flux tube simulation (GS2) indicates that JET pedestal is stable to KBMs due to high bootstrap current JET-C, #79498, 2.5MA /2.7T [Saarelma, Nucl. Fusion 2013]

Pedestal prediction EPED predicts fully developed pedestal before an ELM at crossing of KBM and P-B stability limits EPED has predicted the pedestal height in several devices within ± 20% [Snyder et al., NF 2009] [Snyder et al., NF 2011]

Stability boundary in P-B analysis High-n ballooning: Inclusion of higher toroidal mode numbers reduces the critical pressure gradient at which ballooning modes become unstable, changing the stability boundary Diamagnetic stabilization: BOUT++ simulations indicate that g > w*max/2 at low n and g > C * wA at high n is more appropriate