Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET

Slides:



Advertisements
Similar presentations
Reading: Finish Chapter 6
Advertisements

Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Spring 2007EE130 Lecture 38, Slide 1 Lecture #38 OUTLINE The MOSFET: Bulk-charge theory Body effect parameter Channel length modulation parameter PMOSFET.
Lecture 19 OUTLINE The MOSFET: Structure and operation
EE130/230A Discussion 11 Peng Zheng.
The Devices: MOS Transistor
Chapter 6 The Field Effect Transistor
Lecture 3 Static properties (VTC and noise margins)
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Lecture 05: Static Behaviour of CMOS Inverter
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2003 Lecture 04: CMOS Inverter (static view) Mary Jane.
VLSI System Design DC & Transient Response
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Field Effect Transistors: Operation, Circuit Models, and Applications
Recall Last Lecture Common collector Voltage gain and Current gain
The Inverter EE4271 VLSI Design Professor Shiyan Hu Office: EERC 518
DC Characteristics of a CMOS Inverter
DMT 241 – Introduction to IC Layout
VLSI Design CMOS Inverter UNIT II :BASIC ELECTRICAL PROPERTIES
HW#10 will be posted tonight
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
Lecture 22 OUTLINE The MOSFET (cont’d) MOSFET scaling
Intro to Semiconductors and p-n junction devices
3: CMOS Transistor Theory
MOS Inverters 1.
CMOS Inverter First Glance
EE141 Chapter 3 VLSI Design The Devices March 28, 2003.
Reading: Hambley Ch. 7; Rabaey et al. Sec. 5.2
Lecture 22 OUTLINE The MOSFET (cont’d) Velocity saturation
HW#10 will be posted tonight
Lecture 16 ANNOUNCEMENTS OUTLINE MOS capacitor (cont’d)
Lecture 19 OUTLINE The MOSFET: Structure and operation
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 04: CMOS Inverter (static view) Mary Jane.
Notes on Diodes 1. Diode saturation current:  
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Reading: Finish Chapter 17,
Optional Reading: Pierret 4; Hu 3
Qualitative Discussion of MOS Transistors
DC & Transient Response
Basic electrical properties
The Physical Structure (NMOS)
Prof. Hsien-Hsin Sean Lee
Introduction to CMOS VLSI Design Lecture 5: DC & Transient Response
MOSFETs - An Introduction
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
UNIT-II Stick Diagrams
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
The Inverter EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 731
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture #17 (cont’d from #16)
Lecture 3: CMOS Transistor Theory
Lecture 20 OUTLINE The MOSFET (cont’d) Qualitative theory
CP-406 VLSI System Design CMOS Transistor Theory
Lecture 5: DC & Transient Response
Lecture 22 OUTLINE The MOSFET (cont’d) MOSFET scaling
Lecture 19 OUTLINE The MOS Capacitor (cont’d) The MOSFET:
Lecture 22 OUTLINE The MOSFET (cont’d) Velocity saturation
Lecture #15 OUTLINE Diode analysis and applications continued
Lecture 3: CMOS Transistor Theory
Lecture 20 OUTLINE The MOSFET (cont’d)
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
Lecture 20 OUTLINE The MOSFET (cont’d)
Recall Last Lecture The MOSFET has only one current, ID
Reading: Hambley Ch. 7; Rabaey et al. Secs. 5.2, 5.5, 6.2.1
Lecture 3: CMOS Transistor Theory
Lecture #18 OUTLINE Reading Continue small signal analysis
Lecture #16 OUTLINE MOSFET ID vs. VGS characteristic
Dr. Hari Kishore Kakarla ECE
Presentation transcript:

Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET CMOS inverter analysis Sub-threshold current Small signal model Reading: Pierret 17.3; Hu 6.7, 7.2

P-Channel MOSFET The PMOSFET turns on when VGS < VT Holes flow from SOURCE to DRAIN  DRAIN is biased at a lower potential than the SOURCE In a CMOS technology, the PMOS & NMOS threshold voltages are usually symmetric about 0, i.e. VTp = -VTn VG VDS < 0 IDS < 0 |IDS| increases with |VGS - VT| |VDS| (linear region) VS VD GATE ID P+ P+ N VB EE130/230A Fall 2013 Lecture 21, Slide 2

Long-Channel PMOSFET I-V Linear region: Saturation region: m = 1 + (3Toxe/WT) is the bulk-charge factor EE130/230A Fall 2013 Lecture 21, Slide 3

CMOS Inverter: Intuitive Perspective CIRCUIT SWITCH MODELS VDD VIN VOUT S D G VDD VDD Rp VOUT = 0V VOUT = VDD Rn Low static power consumption, since one MOSFET is always off in steady state VIN = VDD VIN = 0V EE130/230A Fall 2013 Lecture 21, Slide 4

Voltage Transfer Characteristic N: sat P: sat VOUT N: off P: lin C VDD N: sat P: lin A B D E N: lin P: sat N: lin P: off VIN VDD EE130/230A Fall 2013 Lecture 21, Slide 5

CMOS Inverter Load-Line Analysis VGSp=VIN-VDD – + VIN = VDD + VGSp – VDSp=VOUT-VDD + VOUT = VDD + VDSp IDn=-IDp increasing VIN VIN = 0 V VIN = VDD IDn=-IDp increasing VIN VOUT=VDSn VDD VDSp = 0 VDSp = - VDD EE130/230A Fall 2013 Lecture 21, Slide 6

Load-Line Analysis: Region A VGSp=VIN-VDD – + – VDSp=VOUT-VDD + IDn=-IDp VIN  VTn IDn=-IDp VOUT=VDSn VDD EE130/230A Fall 2013 Lecture 21, Slide 7

Load-Line Analysis: Region B VGSp=VIN-VDD – + – VDSp=VOUT-VDD + IDn=-IDp IDn=-IDp VDD/2 > VIN > VTn VOUT=VDSn VDD EE130/230A Fall 2013 Lecture 21, Slide 8

Load-Line Analysis: Region D VGSp=VIN-VDD – + – VDSp=VOUT-VDD + IDn=-IDp IDn=-IDp VDD – |VTp| > VIN > VDD/2 VOUT=VDSn VDD EE130/230A Fall 2013 Lecture 21, Slide 9

Load-Line Analysis: Region E VGSp=VIN-VDD – + – VDSp=VOUT-VDD + IDn=-IDp VIN > VDD – |VTp| IDn=-IDp VOUT=VDSn VDD EE130/230A Fall 2013 Lecture 21, Slide 10

MOSFET Effective Drive Current, IEFF M. H. Na et al., IEDM Technical Digest, pp. 121-124, 2002 V1 V2 V3 CMOS inverter chain: IEFF = IH + IL 2 V1 TIME VDD VDD/2 V2 V3 tpLH tpHL IDsat GND VDD S D VIN VOUT CMOS inverter: IH VIN = VDD NMOS DRAIN CURRENT IL VIN = ½VDD 0.5VDD VDD NMOS DRAIN VOLTAGE = VOUT EE130/230A Fall 2013 Lecture 21, Slide 11

Propagation Delay, td C. C. Hu, Modern Semiconductor Devices for Integrated Circuits, Fig. 6-20 VDD CMOS inverter chain: Voltage waveforms: VDD td is reduced by increasing IEFF and reducing load capacitance C EE130/230A Fall 2013 Lecture 21, Slide 12

Sub-Threshold Current For |VG| < |VT|, MOSFET current flow is limited by carrier diffusion into the channel region. The electric potential in the channel region varies linearly with VG, according to the capacitive voltage divider formula: As the potential barrier to diffusion increases linearly with decreasing VG, the diffusion current decreases exponentially: EE130/230A Fall 2013 Lecture 21, Slide 13

Sub-Threshold Swing, S log ID VGS VT Inverse slope is subthreshold swing, S [mV/dec] NMOSFET Energy Band Profile increasing E distance n(E)  exp(-E/kT) Source Drain increasing VGS EE130/230A Fall 2013 Lecture 21, Slide 14

VT Design Trade-off Low VT is desirable for high ON current: IDsat  (VDD - VT) 1 <  < 2 But high VT is needed for low OFF current: log ID Low VT VT cannot be aggressively reduced! High VT IOFF,low VT IOFF,high VT VGS EE130/230A Fall 2013 Lecture 21, Slide 15

How to minimize S? EE130/230A Fall 2013 Lecture 21, Slide 16

MOSFET Small Signal Model (Saturation Region) Conductance parameters: A small change in VG or VDS will result in a small change in ID low-frequency: high-frequency: R. F. Pierret, Semiconductor Device Fundamentals, Fig. 17.12 EE130/230A Fall 2013 Lecture 21, Slide 17

Parasitic Components EE130/230A Fall 2013 Lecture 21, Slide 18 R.S. Muller & T.I. Kamins, Device Electronics for Integrated Circuits, Fig. 8.12

MOSFET Cutoff Frequency, fT The cut-off frequency fT is defined as the frequency when the current gain is reduced to 1. input current = vG here is ac signal CG is approximately equal to the gate capacitance,  W L Cox output current = At the cutoff frequency (wT = 2pfT): Higher MOSFET operating frequency is achieved by decreasing the channel length L EE130/230A Fall 2013 Lecture 21, Slide 19