The Normal Curve and Sampling Error

Slides:



Advertisements
Similar presentations
Normal Distribution Sampling and Probability. Properties of a Normal Distribution Mean = median = mode There are the same number of scores below and.
Advertisements

Chapter 5 Hypothesis Tests With Means of Samples Part 2: Sept. 12, 2013.
Psy302 Quantitative Methods
The Normal Curve Z Scores, T Scores, and Skewness.
Confidence Intervals Mon, March 22 nd. Point & Interval Estimates  Point estimate – use sample to estimate exact statistic to represent pop parameter.
HIM 3200 Normal Distribution Biostatistics Dr. Burton.
Statistics 101 Class 9. Overview Last class Last class Our FAVORATE 3 distributions Our FAVORATE 3 distributions The one sample Z-test The one sample.
S519: Evaluation of Information Systems Social Statistics Chapter 7: Are your curves normal?
S519: Evaluation of Information Systems
Population Proportion The fraction of values in a population which have a specific attribute p = Population proportion X = Number of items having the attribute.
Quiz 6 Confidence intervals z Distribution t Distribution.
Chapter 7 Estimation. Point Estimate an estimate of a population parameter given by a single number.
Quiz 5 Normal Probability Distribution.
SW318 Social Work Statistics Slide 1 Estimation Practice Problem – 1 This question asks about the best estimate of the mean for the population. Recall.
Review of normal distribution. Exercise Solution.
Confidence Intervals. Estimating the difference due to error that we can expect between sample statistics and the population parameter.
SECTION 6.4 Confidence Intervals for Variance and Standard Deviation Larson/Farber 4th ed 1.
7.2 Confidence Intervals When SD is unknown. The value of , when it is not known, must be estimated by using s, the standard deviation of the sample.
Many times in statistical analysis, we do not know the TRUE mean of a population of interest. This is why we use sampling to be able to generalize the.
© 2002 Thomson / South-Western Slide 8-1 Chapter 8 Estimation with Single Samples.
Many times in statistical analysis, we do not know the TRUE mean of a population of interest. This is why we use sampling to be able to generalize the.
Population All members of a set which have a given characteristic. Population Data Data associated with a certain population. Population Parameter A measure.
Confidence Intervals for Means. point estimate – using a single value (or point) to approximate a population parameter. –the sample mean is the best point.
Smith/Davis (c) 2005 Prentice Hall Chapter Six Summarizing and Comparing Data: Measures of Variation, Distribution of Means and the Standard Error of the.
Describing Behavior Chapter 4. Data Analysis Two basic types  Descriptive Summarizes and describes the nature and properties of the data  Inferential.
Correlation and Prediction Error The amount of prediction error is associated with the strength of the correlation between X and Y.
Measures of Dispersion & The Standard Normal Distribution 9/12/06.
Chapter 7 Estimation Procedures. Basic Logic  In estimation procedures, statistics calculated from random samples are used to estimate the value of population.
July, 2000Guang Jin Statistics in Applied Science and Technology Chapter 7 - Sampling Distribution of Means.
Populations and Samples Central Limit Theorem. Lecture Objectives You should be able to: 1.Define the Central Limit Theorem 2.Explain in your own words.
Determination of Sample Size: A Review of Statistical Theory
Normal Distribution.
© Copyright McGraw-Hill 2000
§ 5.3 Normal Distributions: Finding Values. Probability and Normal Distributions If a random variable, x, is normally distributed, you can find the probability.
Confidence Intervals Population Mean σ 2 Unknown Confidence Intervals Population Proportion σ 2 Known Copyright © 2013 Pearson Education, Inc. Publishing.
Aron, Aron, & Coups, Statistics for the Behavioral and Social Sciences: A Brief Course (3e), © 2005 Prentice Hall Chapter 6 Hypothesis Tests with Means.
The Single-Sample t Test Chapter 9. t distributions >Sometimes, we do not have the population standard deviation. (that’s actually really common). >So.
© 2008 McGraw-Hill Higher Education The Statistical Imagination Chapter 8. Parameter Estimation Using Confidence Intervals.
Review Normal Distributions –Draw a picture. –Convert to standard normal (if necessary) –Use the binomial tables to look up the value. –In the case of.
Estimating a Population Mean. Student’s t-Distribution.
Confidence Interval for a Single Proportion p-hat, not phat.
Point Estimates point estimate A point estimate is a single number determined from a sample that is used to estimate the corresponding population parameter.
Confidence Intervals for a Population Mean, Standard Deviation Unknown.
© 2008 McGraw-Hill Higher Education The Statistical Imagination Chapter 5. Measuring Dispersion or Spread in a Distribution of Scores.
6.4 Confidence Intervals for Variance and Standard Deviation Key Concepts: –Point Estimates for the Population Variance and Standard Deviation –Chi-Square.
Welcome to MM207 - Statistics! Unit 6 Seminar: Inferential Statistics and Confidence Intervals.
Chapter 8 Interval Estimates For Proportions, Mean Differences And Proportion Differences.
Chapter Six Summarizing and Comparing Data: Measures of Variation, Distribution of Means and the Standard Error of the Mean, and z Scores PowerPoint Presentation.
CHAPTER 8 Estimating with Confidence
Active Learning Lecture Slides
Inference for the Mean of a Population
Chapter 9 Hypothesis Testing.
STANDARD ERROR OF SAMPLE
The Normal Distribution
Chapter 7 Inferences Based on a Single Sample
Descriptive measures Capture the main 4 basic Ch.Ch. of the sample distribution: Central tendency Variability (variance) Skewness kurtosis.
Math 4030 – 10b Inferences Concerning Variances: Hypothesis Testing
Hypothesis Testing: Two Sample Test for Means and Proportions
Measures of Variability
Chapter 5 Hypothesis Tests With Means of Samples Part 2: Sept. 9, 2014.
Chapter 6 Confidence Intervals.
Empirical Rule MM3D3.
Data analysis and basic statistics
Confidence Intervals for a Standard Deviation
Chapter 7 Lecture 3 Section: 7.5.
Determining Which Method to use
Chapter Outline Inferences About the Difference Between Two Population Means: s 1 and s 2 Known.
Chapter 6 Confidence Intervals.
Accuracy of Averages.
Chapter 7 Lecture 3 Section: 7.5.
Presentation transcript:

The Normal Curve and Sampling Error Chapter 6 The Normal Curve and Sampling Error

Difference between SD & SE? SD is the sum of the squared deviations from the mean. SE is the amount of ERROR in the estimate of the population based on the sample.

Need for Standard Scores In the Olympics the last place finishers are all superior to non-Olympic athletes. How good is a 4 m long jump in high school? Given mean = 5, we know that 4 m was below the mean.

More than 95% of scores fall between ± 2 SD Z of 1.96 is the 95% value

Z Scores

Computing Confidence Intervals

Area Under Normal Curve Z = 1.96 is 95% level. 2.5% in each tail. 50 - 2.5 = 47.50

T Score

Skewed Distribution

Interpretation of Skew Skew is acceptable as long as the Z score is less than 2.0 [p 89]

Interpretation of Kurtosis Kurtosis is acceptable as long as the Z score is less than 2.0 [p 89]

SPSS Interpretation of Skew From Table 6.2 p 87 A skew that is more than twice it’s SE is taken as a departure from symmetry. In this case the Skew of -.988 is not greater than 2 * .637 = 1.274 See p 287 of SPSS Base Manual

Confidence Intervals

Using SE for Confidence Interval

Computing Confidence Intervals