Low Temperature Impedance of Multiferroic BiMnO3 Thin Films

Slides:



Advertisements
Similar presentations
Analysis of nanostructural layers using low frequency impedance spectroscopy Hans G. L. Coster Part 2: Dielectric Structure Refinement.
Advertisements

Modeling of the Current Distribution in Aluminum Anodization Rohan Akolkar and Uziel Landau Department of Chemical Engineering, CWRU, Cleveland OH
Impedance Spectroscopy (Or, how a sinusoidally varying voltage is used to probe multiple electrical properties of materials) Yun-Ju (Alex) Lee June 13,
IMPEDANCE SPECTROSCOPY: DIELECTRIC BEHAVIOUR OF POLYMER ELECTROLYTES
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS): A TOOL FOR THE CHARACTERIZATION OF SPUTTERED NIOBIUM FILMS M. Musiani Istituto per l’Energetica e le Interfasi,
Structural Properties of Electron Beam Deposited CIGS Thin Films Author 1, Author 2, Author 3, Author 4 a Department of Electronics, Erode Arts College,
Analysis of nanostructural layers using low frequency impedance spectroscopy Hans G. L. Coster Part 3: Phenomenological Impedances.
Capacitors for RF Applications Michael P. Busse Vice President Dielectric Laboratories, Inc 2777 Rte. 20 East Cazenovia, NY
Dielectric Properties of Ceramic Thin Films Mara Howell Materials Science and Engineering Junior, Purdue University Professor Kvam, Research Advisor.
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
OUTLINE Introduction „Tera-to-Nano“: Our Novel Near-Field Antenna 80 GHz CW Frequency Domain Measurements Picosecond Pulse Time Domain Measurements 2D.
Impedance spectroscopy - with emphasis on applications towards grain boundaries and electrodics Harald Fjeld Department of Chemistry, University of Oslo,
Application of Impedance Spectroscopy to characterise grain boundary and surface layer effects in electroceramics. Derek C Sinclair Department of Engineering.
Studies on Capacity Fade of Spinel based Li-Ion Batteries by P. Ramadass, A. Durairajan, Bala S. Haran, R. E. White and B. N. Popov Center for Electrochemical.
Effects of Discharge Rates on the Capacity Fade of Li-ion Cells Department of Chemical Engineering University of South Carolina 1 Effects of Discharge.
Epitaxial Growth of Ferroelectric Titanate Layers by Sol-Gel Routes Muhammad Salameh Prof. Eric P. Kvam.
( electrochemical impedance spectroscopy, EIS)
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
Temperature-Dependent Electrical Characterization of Multiferroic BFO Thin Films Danielle Hitchen, Sid Ghosh, K. Hassan, K. Banerjee, J. Huang Electrical.
Piezoelectric Equations and Constants
1 Effective Decoupling Radius of Decoupling Capacitor Huabo Chen, Jiayuan Fang, Weiming Shi * Dept. of Electrical Engineering University of California,
Plasma Application LAB Wide range dielectric spectroscopy of ZnO-based varistors as a function of sintering time 발표자 : 권득철.
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
Chemical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH Nanoscale Ni/NiO films for electrode and electrochemical Devices.
Introduction to Electrochemical Impedance Spectroscopy (EIS)
5 장 Dielectrics and Insulators. Preface ‘ Ceramic dielectrics and insulators ’ is a wide-ranging and complex topic embracing many types of ceramic, physical.
Conductive epitaxial ZnO layers by ALD Conductive epitaxial ZnO layers by ALD Zs. Baji, Z. Lábadi, Zs. E. Horváth, I. Bársony Research Centre for Natural.
Electrochemistry for Engineers LECTURE 4 Lecturer: Dr. Brian Rosen Office: 128 Wolfson Office Hours: Sun 16:00.
Master Colloquium Field-effect Control of Insulator-metal Transition Property in Strongly Correlated (La,Pr,Ca)MnO 3 Film Ion Liquid (IL) LPCMO channel.
Ho-Gun Kim, Seung-Ho Ahn, Jung-Gu Kim, *Se-Jun Park, *Kwang-Ryol Lee, **Rizhi Wang SungKyunKwan University, Korea *Korea Institute of Science and Technology,
Electro-Ceramics Lab. Electrical Properties of SrBi 2 Ta 2 O 9 Thin Films Prepared by r.f. magnetron sputtering Electro-ceramics laboratory Department.
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
Properties of the bakelite used for standard RPC chambers as a function of the operating temperature F. Bruni – G. Hull – S.M. Mari 4 digital thermometers.
Electrical Transport Properties of La 0.33 Ca 0.67 MnO 3 R Schmidt, S Cox, J C Loudon, P A Midgley, N D Mathur University of Cambridge, Department of Materials.
Variable-range hopping conduction in NTCR thermistors R. Schmidt, A.W. Brinkman, A. Basu Department of Physics, University of Durham, South Road, Durham.
2. Sample Structure Effect of sintering temperature on dielectric loss, conductivity relaxation process and activation energy in Ni 0.6 Zn 0.4 Fe 2 O 4.
Contact free potential mapping by vibrating capacitor Mizsei, János 1-4/10/2006 Laulasmaa Budapest University of Technology and Economics, Department of.
CH5715 Energy Conversion and Storage
Production of NTCR Thermistor Devices based on NiMn2O4+d
Impedance Spectroscopy on Multiferroic BiFeO3 Epitaxial Thin Films
In-situ characterization of phase changes in lysozyme/ trehalose solutions using through vial impedance spectroscopy M.S. Arshad, I. Ermolina ,E. Polygalov,
High-temperature ferromagnetism
Impedance spectroscopy of nickel manganite NiMn2O4
Effects of sintering temperature on the physical and
Relationship between microstructure and experimental conditions
Capacitance and Dielectrics
Dielectric response to the spin state transition in LaCoO3-d Ceramics
Motivation Experimental method Results Conclusion References
Magneto-Impedance Spectroscopy of Epitaxial Multiferroic Thin Films
CAPACITANCE SENSOR.
Universidad Complutense de Madrid, Departamento Física Aplicada III
Wide Frequency Dependence of Impedance, Electric Modulus and Conductivity of Lead-Free Ba0.5Sr0.5Ti(1-X)InxO3 Ceramics H.Z. Akbas1, Z. Aydin1, A.Colak1,
R Schmidt1, W Eerenstein1, F D Morrison2, P A Midgley1
High pressure synthesis of lone-pair
The 9th international Conference for Basic Sciences
Rainer Schmidt 1 Jungho Ryu 2 Dong-Soo Park 2
Lecture N. 6: Induced Polarisation (IP)
Universidad Complutense de Madrid, Departamento Física Aplicada III, GFMC Rainer Schmidt Microstructure and dielectric properties of CaCu3Ti4O12 (CCTO)
Impedance Spectroscopy on Nano-sized Multiferroic Thin Films
Non-stoichiometry in CaCu3Ti4O12 (CCTO) ceramics
Capacitors for RF Applications Michael P. Busse Vice President
Total Dose Response of HfSiON MOS Capacitors
Partial Electronic and Ionic Conductivities of
Displacement Current This term must represent a current
Inverse Phase Transition
Growth Behavior of Co on Al(001) substrate
Ionic liquid gating of VO2 with a hBN interfacial barrier
Presentation transcript:

Low Temperature Impedance of Multiferroic BiMnO3 Thin Films The University of Sheffield, Department of Engineering Materials Rainer Schmidt Low Temperature Impedance of Multiferroic BiMnO3 Thin Films Rainer Schmidt Speaker: Antonio Feteira The University of Sheffield Engineering Materials Electroceramics Research Group 14th November 2007 7th Pacific Rim Conference on Glass and Ceramics Technology S12-32-O

Low Temperature Impedance of Multiferroic BiMnO3 Thin Films The University of Sheffield, Department of Engineering Materials Rainer Schmidt Low Temperature Impedance of Multiferroic BiMnO3 Thin Films 1. Introduction 2. Impedance Spectroscopy 3. Multiferroic BiMnO3 4. Thin Film Epitaxy 5. Equivalent Circuit Analysis 6. Conclusions

Any Useful for Interface 1. Introduction Rainer Schmidt Dielectric and Resistive Characterisations by Impedance Spectroscopy Well Established: Hardly ever Used: Polycrystalline Bulk Material Separation of Contributions from Electrode - Sample Interface Layer Grain Boundary Areas Grain Interior Bulk Material Thin Epitaxial Layers Epitaxial Layer Electrodes Wafer Substrate No Grain Boundaries Any Useful for Interface and Film Separation ???

Impedance Spectroscopy 2. Impedance Spectroscopy Rainer Schmidt Impedance Spectroscopy Application of an Alternating Voltage Signal to a Sample: Measurement of the Alternating Current Response: Time Dependent Definition of the Impedance: U(w,t )=U0 cos(w t ) I(w,t ) = I0 cos(w t +d ) U(w,t ) U0 cos(w t ) Z(w,t ) I(w,t ) I0 cos(w t + d ) Time Independent Complex Impedance: Z* (d ) (d ) (id )

U, I Ideal Capacitor Time Dependent Notation Phase Arrow Diagram 2. Impedance Spectroscopy Rainer Schmidt Time Dependent Notation Phase Arrow Diagram U, I U=U0 cos(w t) IC=I0 cos(w t-p/2) C R IRC=I0 cos(w t –d ) d IR=I0 cos(w t) g CPE IC-CPE=I0 cos(w t -p/2+g) ZC-CPE=1/(iw)n C ; n ~ 1 Ideal Capacitor ZR=R ZC=1/iwC IL=I0 cos(w t +p/2) ZL=iwL Time Independent Complex Impedance g = (1-n) 90º

Complex Relationship Dielectric Constant – Capacitance Relationship 2. Impedance Spectroscopy Rainer Schmidt Complex Relationship Dielectric Constant – Capacitance Relationship Contact Area A d Contact Distance Capacitance of the Measuring Cell in Vacuum

Relative Dielectric Constant 3. Multiferroic BiMnO3 Rainer Schmidt Multiferroic Magneto-Electric BiMnO3 (BMO) Ferroelectric below TCurie ~ 760 K Kimura et al., Phys.Rev.B 67 (2003) R180401 Ferromagnetic below TCurie ~ 105K Chiba et al., J.Solid State Chem. 132 (1997) p 139 Remnant Polarisation Pr at 200 K: 43 nC/cm2 (Ceramic) Moreira dos Santos et al., Solid State Commun. 122 (2002) p 49 Remnant Polarisation Pr at 120 K: 4.1 nC/cm2 (Thin Film) Spontaneous Magnetisation below TC: ~ 3.6 mB/ Mn (Ceramic) Chiba et al., J.Solid State Chem. 132 (1997) p 139 ~ 2.2 mB/ Mn (Thin Film) Eerenstein et al., Science, 307 (2005) p 1203a Magneto-Capacitance in BMO Polycrystalline Bulk Kimura et al., Phys.Rev.B 67 (2003) R180401 Relative Dielectric Constant Weak Dielectric Response at TC Temperature (K)

Pulsed Laser Deposition of BiMnO3 Thin Films 4. Thin Film Epitaxy Rainer Schmidt Pulsed Laser Deposition of BiMnO3 Thin Films 1. Vacuum Annealing of the 1%at. Nb doped STO Substrate at 700°C for 1 h 2. Deposition at 0.1 Pa O2 Partial Pressure at 450°C - Variable Deposition Time - 1.5 J·cm-2 Laser Fluence - 1 Hz Laser Pulse Frequency 3. Post Deposition Annealing at 60 kPa O2 Partial Pressure at 500°C for 1 Hour See also: W. Eerenstein et al., Appl.Phys.Lett. 87 (2005) 101906

Sample Geometry Equivalent Circuit 50 nm 4. Thin Film Epitaxy Rainer Schmidt Equivalent Circuit Sample Geometry 50 nm

Complex Impedance Data of Epitaxial BiMnO3 5. Equivalent Circuit Analysis Rainer Schmidt Complex Impedance Data of Epitaxial BiMnO3 Modulus M '' Discrimination Between Interface and Intrinsic Film Contributions can be Achieved by Analysing the Capacitance C1 and C2 in Dependence on Film Thickness Schmidt et al., Phys.Rev.B 75 (2007) p.245111 Frequency Range: 40 Hz – 2.5 MHz ; Voltage Signal: 50 mV = Data = Model; measured at 75 K Specific impedances z', -z'' in Ω·cm normalised by g = A (contact area) / d (2 x film thickness)

Temperature Dependence of Resistance 5. Equivalent Circuit Analysis Rainer Schmidt Temperature Dependence of Resistance R1 (Interface) Non-insulating R2 (Film) R2 125 K-155 K

Temperature Dependence of Capacitance 5. Equivalent Circuit Analysis Rainer Schmidt Temperature Dependence of Capacitance Massive Dielect. Response in Thin Films C1 (Interface) C2 (Film)

Weak Dielectric Response at TC 5. Equivalent Circuit Analysis Rainer Schmidt Magneto-Capacitance in BiMnO3 Polycrystalline Bulk Kimura et al., Phys.Rev.B 67 (2003) R180401 Relative Dielectric Constant Weak Dielectric Response at TC Temperature (K)

Conclusions Impedance Spectroscopy is a Useful Tool for Dielectric 6. Conclusions Rainer Schmidt Conclusions Impedance Spectroscopy is a Useful Tool for Dielectric Characterization of Multiferroic Thin Films Multiferroic BiMnO3 Thin Film Impedance Spectra Display an Interface and a Film Contribution The BiMnO3 Thin Film Resistance is Non-insulating below TC Massive Response of the Dielectric Constant at TC was Detected Indicating Magneto-Electric Coupling or a Phase Transition

Acknowledgments rainerxschmidt@googlemail.com r.schmidt@shef.ac.uk 7. Acknowledgments Rainer Schmidt Acknowledgments Wilma Eerenstein (Film Growth) Paul Midgley (Supervision) University of Cambridge Department of Materials Science Please Send Your Questions to: rainerxschmidt@googlemail.com r.schmidt@shef.ac.uk

Equivalent Circuit wmax = 2p fmax - Ferroelectrics - Dielectrics Impedance on the Complex Plane Rainer Schmidt Equivalent Circuit - Ferroelectrics - Dielectrics - Thermistors R Real – and Imaginary Parts of the Impedance Nyquist Plot 106 105 104 103 102 101 100 10-1 10-2 106 105 104 103 102 101 100 10-1 10-2 1.0E5 7.5e4 5.0E4 2.5E4 wmax = 2p fmax Z’ -Z’’ -Z’’ R = 100 kΩ C’ = 10 nF 101 102 103 104 105 106 107 108 0 2.5E4 5.0E4 7.5E4 1.0E5 Frequency in Hz Z’

- Z’’ Z’ Brick Layer Model Narrow, Homogeneous Data Analysis: The Brick-Layer Model Rainer Schmidt Brick Layer Model Narrow, Homogeneous Distribution of Grain Sizes Identical Grain Boundary, Electrode and Bulk Properties and Homogeneous Shapes Bulk Cb ~ 1 x 10-12 F Grain Boundary Cgb ~ 1 x 10-9 F Electrodes Cel ~ 1 x 10-6 F Rb Cb Rgb Cgb Rel Cel Equivalent Circuit - Z’’ Nyquist Plot Negative Imaginary Part of Impedance –Z’’ vs Real Part Z’ frequency Z’ Rb Rb+Rgb Rb+Rgb+Rel

Identification of the Origin of Relaxation Times Data Analysis: The Brick Layer Model Rainer Schmidt Identification of the Origin of Relaxation Times Normalised Capacitance in F/cm Origin of the RC Element 10-12 10-11 10-11 – 10-8 10-10 – 10-9 10-9 – 10-7 10-7 – 10-5 10-4 bulk minor second phase grain boundary bulk ferroelectric surface layer sample – electrode interface electrochemical reaction Irvine et al., Advanced Materials, 2 (3) (1990) 132 The Values are Valid Only for Samples of the Size 1 cm x 1cm x 1cm For Bulk Contributions Data can be Normalized Using the Geometrical Factor g: d For Electrode Contributions Data can be Normalized Using the Contact Size A