Clam Structures of Metal-Biphenyl Complexes: M-C12H10 (M = Sc, La, Ti)

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

PREFERRED METAL BINDING SITE OF ANILINE SUDESH KUMARI, BRAD SOHNLEIN, DILRUKSHI HEWAGE, and DONG-SHENG YANG University of Kentucky, Lexington, KY
IR-UV PHOTOIONIZATION AND DEPLETION SPECTROSCOPY OF Al- AND Cu-ETHYLENEDIAMINE COMPLEXES Yuxiu Lei, Jung Sup Lee, and Dong-Sheng Yang Department of Chemistry,
Photoelectron Spectroscopy Lecture 3: vibrational/rotational structure –Vibrational selection rules –Franck-Condon Effect –Information on bonding –Ionization.
Sergiy Krasnokutski, Changhua Zhang and Dong-Sheng Yang University of Kentucky, Lexington, KY 40506, USA $ National Science Foundation $
Bonding Theories Summary Edward A. Mottel Department of Chemistry Rose-Hulman Institute of Technology.
Applications of UV-Vis Molecular Absorption Spectrometry
How does CFT measure up? I. Colours of Transition Metal Complexes
Lecture 29 Electronic Spectra of Coordination Compounds ML x (x = 4,6) 1) Electron repulsion B’ and   parameters for d 3 & d 8 O h species The d-electron-d-electron.
Photochemistry Lecture 2 Fates of excited states of polyatomic molecules.
La-Mediated Bond Activation, Coupling, and Cyclization of 1,3-butadiene Probed by Mass-Analyzed Threshold Ionization Spectroscopy Department of Chemistry.
Which method? We’re using Density Functional Theory (DFT) as it gives us the most accurate results for transition metals in the least amount of time.
C-O and O-H Bond Activation of Methanol by Lanthanum Atom Ruchira Silva, Dilrukshi Hewage and Dong-Sheng Yang Department of Chemistry University of Kentucky.
PULSED-FIELD IONIZATION ELECTRON SPECTROSCOPY OF Al-URACIL COMPLEX Sergiy Krasnokutski and Dong-Sheng Yang University of Kentucky, Lexington, KY 40506,
The Negative Ion Photoelectron Spectra of MoV and CrV Presentedby Beau Barker.
Slide 2/26 Schedule Lecture 1: Electronic absorption spectroscopy Jahn-Teller effect and the spectra of d 1, d 4, d 6 and d 9 ions Lecture 2: Interpreting.
Vibrational and Geometric Structures of La 3 C 2 O and La 3 C 2 O + from MATI Spectra and ab initio Calculations Mourad ROUDJANE, Lu WU, and Dong-Sheng.
Infrared Photodissociation Spectroscopy of Silicon Carbonyl Cations
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
Introduction Methods Conclusions Acknowledgement The geometries, energies, and harmonic vibrational frequencies of complexes studied were calculated using.
Pulsed Field Ionization-Zero Electron Kinetic Energy (PFI-ZEKE) Spectroscopy of Sc-C 6 H 5 X(X=F,CH 3,OH) Complexes Changhua Zhang, Serge A. Krasnokutskia.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Vibrational, Electronic, and Fluorescence Spectra and Ab Initio Calculations of 1,4-Benzodioxan (14BZD) Juan Yang, Martin Wagner, Daniel Autrey, and Jaan.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
M. KUMRU, M. KOCADEMİR, H. M. ALFANDA Fatih University, Faculty of Arts and Sciences, Physics Department, Büyükçekmece, Istanbul.
Infrared Spectroscopy & Structures of Mass-Selected Rhodium Carbonyl & Rhodium Dinitrogen Cations Heather L. Abbott, 1 Antonio D. Brathwaite 2 and Michael.
Infrared Photodissociation Spectroscopy of TM + (N 2 ) n (TM=V,Nb) Clusters E. D. Pillai, T. D. Jaeger, M. A. Duncan Department of Chemistry, University.
LASER PHOTODISSOCIATION SPECTRA OF THE ANILINE-ARGON CATIONIC CLUSTER IN THE NEAR INFRARED T. PINO, S. DOUIN, Ph. BRECHIGNAC Laboratoire de Photophysique.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Infrared Resonance Enhanced Photodissociation (IR- REPD) Spectroscopy used to determine solvation and structure of Ni + (C 6 H 6 ) n and Ni + (C 6 H 6.
HOW DOES SCANDIUM ATOM BIND TO 1-PHENYL NAPHTHALENE? BRADFORD R. SOHNLEIN, JASON F. FULLER, AND DONG-SHENG YANG University of Kentucky Lexington, KY
PFI-ZEKE Spectroscopy of Aluminum-Imidazole and -Pyrimidine Complexes JUNG SUP LEE, XU WANG, SERGIY KRASNOKUTSKI, and DONG-SHENG YANG University of Kentucky.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Infrared Resonance Enhanced Photodissociation of Au + (CO) n Complexes in the Gas Phase Joe Velasquez, III, E. Dinesh Pillai and Michael A. Duncan Department.
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
Main Title Manori Perera 1 and Ricardo Metz University of Massachusetts Amherst 64 th International Symposium on Molecular Spectroscopy June 25th, 2009.
PULSED-FIELD IONIZATION ELECTRON SPECTROSCOPY OF LANTHANIDE (Gd, Lu) BENZENE COMPLEXES M. ROUDJANE, S. KUMARI and D.-S. YANG University of Kentucky Lexington,
IR photodepletion and REMPI spectroscopy of Li(NH 2 Me) n clusters Tom Salter, Victor Mikhailov, Corey Evans and Andrew Ellis Department of Chemistry International.
Ce-Promoted Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy Department of Chemistry University of Kentucky, Lexington,
Photoelectron Spectroscopy of Pyrazolide Anion Three Low-lying Electronic States of the Pyrazolyl Radical Adam J. Gianola Takatoshi Ichino W. Carl Lineberger.
Vibronic Perturbations in the Electronic Spectrum of Magnesium Carbide Phalgun Lolur*, Richard Dawes*, Michael Heaven + *Department of Chemistry, Missouri.
Tridentate Binding Structure of Cu-(2,2:6,2  -Terpyridine) XU WANG and DONG-SHENG YANG Department of Chemistry, University of Kentucky, Lexington, KY,
FAR-IR ACTION SPECTROSCOPY OF AMINOPHENOL AND ETHYLVANILLIN: EXPERIMENT AND THEORY Vasyl Yatsyna, Daniël Bakker*, Raimund Feifel, Vitali Zhaunerchyk, Anouk.
Temperature Dependence of Rb + (H 2 O) n and Rb + (H 2 O) n Ar (n=3-5) Cluster Ions Amy L. Nicely OSU International Symposium on Molecular Spectroscopy.
Mass-Analyzed Threshold Ionization of Lu 2 Lu Wu, Mourad Roudjane, Dong-Sheng Yang Department of Chemistry University of Kentucky Lexington, KY, 40504,USA.
Department of Chemistry, University of Kentucky, Lexington, KY, 40506
Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy.
Tayyibe Bardakçı, Mustafa Kumru, and Ahmet Altun İstanbul/Turkey
Intramolecular charge transfer (ICT) in two phenylpyrrol derivatives: PP and PBN Two similar molecules but a different behavior Danielle Schweke Baumgertan.
Chapter 7 – Periodic Properties of Elements
Mass-Analyzed Threshold Ionization Spectroscopy
Tokyo Univ. Science Mitsunori Araki, Yuki Matsushita, Koichi Tsukiyama
Department of Chemistry University of Kentucky
Amy L. Nicely and James M. Lisy
Study of Rattling Atoms in Type I and Type II Clathrate Semiconductors
Vibrational Spectroscopy and Theory of Cu+(CH4)n and Ag+(CH4)n (n=1-6)
Funded by NSF (ES) and DOE (TZ)
INFRARED SPECTRA OF ANIONIC COBALT-CARBON DIOXIDE CLUSTERS
ANHARMONIC VIBRATIONAL SPECTROSCOPY FOR TRANSITION METAL COMPLEXES
Threshold Ionization and Spin-Orbit Coupling of CeO
1) Using Slater’s rule confirm that the experimentally observed electronic configuration of K, 1s2 2s2 2p6 3s2 3p6 4s1, is energetically more stable than.
Half-Sandwich Structure of Cyclopentadienyl Dialuminum
Multiple Lewis Dot Structures
Schedule Lecture 1: Electronic absorption spectroscopy Jahn-Teller effect and the spectra of d1, d4, d6 and d9 ions Lecture 2: Interpreting electronic.
Anil K. Kandalam* Department of Physics
C-H Bond Activation of Butenes
Stepwise Internal Energy Control for Protonated Methanol Clusters
Lecture 20 February 22, 2010 Pd,Pt ox-add, red-elim; Bonds to MH+
Tryptophan - gas phase tautomer
Department of Chemistry University of Kentucky
Presentation transcript:

Clam Structures of Metal-Biphenyl Complexes: M-C12H10 (M = Sc, La, Ti) BRAD SOHNLEIN, YUXIU LEI, and DONG-SHENG YANG Department of Chemistry University of Kentucky Lexington, KY 40506, USA $$ NSF & KSEF $$

Structure of Biphenyl Biphenyl is planar in the crystalline state In the gas phase, the phenyl rings are twisted

Structure of Biphenyl Biphenyl is planar in the crystalline state In the gas phase, the phenyl rings are twisted A balance between p-conjugation and steric repulsions

Metal-Biphenyl Complexes Good models for conducting organometallic polymers Two types of structures have been identified in the condensed phase No gas phase structural determination of M-biphenyl complexes

Experimental Apparatus biphenyl Sc, La, or Ti rod Nd:YAG UV

Sc-Biphenyl ZEKE Spectrum 0-0 39114 cm-1 FWHM ~ 8 cm-1 Ta Expt.

Sc-Biphenyl ZEKE Spectrum 568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta 12 Expt.

Theoretical Methodology B3LYP and B3P86 implemented in Gaussian 03* Geometry optimizations and frequency analyses Calculate Franck-Condon integrals within the harmonic approximation Simulate spectra at finite temperatures using a Boltzman distribution * 6-311+G(d,p) for all atoms, except La atom (LanL2DZ ECP)

Sc-Biphenyl Electronic States ion 3A 1A Half-sandwich neutral 2A 4A

Sc-Biphenyl Electronic States Clam ion 3A 1A Half-sandwich 2A neutral 4A 2B1

Sc-Biphenyl Electronic States Clam ion 3A 1A Half-sandwich 4B1 neutral 2A 4A 2B1

Sc-Biphenyl Electronic States Clam 3A ion 1A Half-sandwich 1A1 4B1 neutral 2A 4A 2B1

Sc-Biphenyl Electronic States Clam 3B1 3A ion 1A Half-sandwich 1A1 4B1 neutral 2A 4A DS =  1 2B1

Sc-Biphenyl Electronic States Clam 3B1 3A ion 1A Half-sandwich 1A1 neutral DS =  1 xxxxxxxxxxxxxxxxxxxxx 2B1

Sc-Biphenyl Electronic States Clam 3B1 ion 1A1 ~ 44000 cm-1 neutral DS =  1 xxxxxxxxxxxxxxxxxxxxx 2B1

Sc-Biphenyl Electronic States Clam 3B1 3A ion 1A Half-sandwich 1A1 4B1 neutral 2A 4A DS =  1 xxxxxxxxxxxxxxxxxxxxx 2B1

Sc-Biphenyl ZEKE Spectrum 568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Half-sandwich

Sc-Biphenyl ZEKE Spectra 568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Half-sandwich * 3A  4A

Sc-Biphenyl ZEKE Spectra 568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Half-sandwich 3A  2A * 3A  4A

Sc-Biphenyl ZEKE Spectra 568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. 1A  2A Half-sandwich 3A  2A * 3A  4A

Sc-Biphenyl ZEKE Spectra 568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Clam (C2v)

Sc-Biphenyl ZEKE Spectra 568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Clam (C2v) 3B1  4B1

Sc-Biphenyl ZEKE Spectra 568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. Clam (C2v) 3B1  2B1 3B1  4B1

Sc-Biphenyl ZEKE Spectra 568 39114 cm-1 FWHM ~ 8 cm-1 378 336 284 Ta Expt. 1A1  2B1 Clam (C2v) 3B1  2B1 3B1  4B1

Observed Transition and Vibrations (cm-1) Expt. Theo.

Sc-Biphenyl Vibration Movies n17+ = 336 cm-1 n16+ = 378 cm-1 n15+ = 568 cm-1 n32+/ n32 = 142 / 155 cm-1

Further Experiments Is forming a clam structure dependent on: a.) size of metal—down the group b.) electronic species—across the row La-bp (size effect) and Ti-bp (electronic effect)

La-Biphenyl ZEKE Spectrum 0-0 36516 cm-1 FWHM ~ 6 cm-1 Expt.

La-Biphenyl ZEKE Spectrum 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt.

La-Biphenyl Vibration Movies n17+ = 257 cm-1 n16+ = 370 cm-1 n15+ = 532 cm-1 Not observed

Sc-Biphenyl Electronic States Clam 3B1 3A ion 1A Half-sandwich 1A1 4B1 neutral 2A 4A DS =  1 2B1

La-Biphenyl Electronic States Clam 3B1 3A 1A ion Half-sandwich 1A1 4B1 neutral 2A DS =  1 4A 2B1

La-Biphenyl Electronic States Clam 3B1 3A 1A ion 1A1 ~ 40700 cm-1 neutral DS =  1 xxxxxxxxxxxxxxxxxxxxx 2B1

La-Biphenyl Electronic States Clam 3B1 3A 1A ion Half-sandwich 1A1 4B1 neutral 2A DS =  1 4A xxxxxxxxxxxxxxxxxxxxx 2B1

La-Biphenyl ZEKE Spectrum 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Half-sandwich

La-Biphenyl ZEKE Spectra 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Half-sandwich 3A  4A

La-Biphenyl ZEKE Spectra 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Half-sandwich 3A  2A 3A  4A

La-Biphenyl ZEKE Spectra 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. 1A  2A Half-sandwich 3A  2A 3A  4A

La-Biphenyl ZEKE Spectrum 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Clam (C2v)

La-Biphenyl ZEKE Spectra 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Clam (C2v) 3B1  4B1

La-Biphenyl ZEKE Spectra 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 Expt. Clam (C2v) 3B1  2B1 3B1  4B1

La-Biphenyl ZEKE Spectra 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 La Expt. 1A1  2B1 Clam (C2v) 3B1  2B1 3B1  4B1

La-Biphenyl ZEKE Spectrum 36 % narrower 5.5 3.5

La-Biphenyl ZEKE Spectra 257 36516 cm-1 370 FWHM ~ 6 cm-1 532 * La Expt. 1A1  2B1 Clam (C2v) 3B1  2B1 3B1  4B1

Further Experiments Is forming a clam structure dependent on: a.) size of metal—down the group b.) electronic species—across the row La-bp (size effect) and Ti-bp (electronic effect) Sc and La: (n-1)d1 ns2 Ti: (n-1)d2 ns2

Ti-Biphenyl ZEKE Spectrum Expt.

Ti-Biphenyl ZEKE Spectrum 194 Expt.

Ti-Biphenyl ZEKE Spectrum 350 194 Expt.

Ti-Biphenyl ZEKE Spectrum 350 194 194 Expt.

Ti-Biphenyl ZEKE Spectrum 350 194 326 194 Expt.

Ti-Biphenyl ZEKE Spectrum 350 194 326 Expt. 208 194 Expt.

Ti-Biphenyl ZEKE Spectrum 350 194 326 208 194 43842 0-0 350 Expt.

Ti-Biphenyl Electronic States Clam 2A ion Half-sandwich 4A 1A neutral 5A 3A

Ti-Biphenyl Electronic States Clam 2A ion Half-sandwich 4A 1A neutral 5A 3B1 3A 1A1

Ti-Biphenyl Electronic States Clam 2A 4B1 clam ? ion 2B1 Half-sandwich 4A 5A DS =  1 1A neutral 5A 3B1 3A 1A1

Ti-Biphenyl Electronic States Clam 2B1 ion 46700 cm-1 DS =  1 xxxxxxxxxxxxxxxxxxxxx neutral 1A1

Ti-Biphenyl ZEKE Spectrum 350 194 326 208 194 43842 350 Expt.

Ti-Biphenyl ZEKE Spectra 350 194 326 208 194 43842 350 Expt. 2B1  1A1

Ti-Biphenyl Vibration Movies n18 +/n18 = 194 / 208 cm-1 n17+/n17 = 350 / 326 cm-1

Summary 11 % overestimation

IE Overestimation by B3P86 Average ~ 10 % bz = benzene, np = naphthalene, phnp = phenyl-naphthalene, bp = biphenyl

Summary 10 % correction

Summary 10 % correction

Conclusions A new “clam” binding mode for biphenyl was identified Small (Sc) and large (La) metal atom coordination Different electron configurations: (n-1)d1 ns2 and (n-1)d2 ns2 Recorded first vibronic spectrum of a gas phase metal-biphenyl complex AIE measurements Metal- and ligand-based frequencies B3P86 overestimates IEs by ~ 10%

Thanks for your time

Size-dependent? Bond lengths: Increased radius by ~ 16 % Sc-Sc = 3.212 Å / 2 = 1.606 Å La-La = 3.739 Å / 2 = 1.870 Å Increased radius by ~ 16 % clam still formed What about Ti? Ti-Ti = 2.8956 / 2 Å = 1.448 Å valence electon configuration 4s23d2 CRC Handbook of Chemistry, 66th edition © 1985

La-biphenyl ZEKE spectrum 257 36516 cm-1 ~ 3.5 370 FWHM ~ 6 cm-1 532 La Expt. ~ 5.5 ~ 5.3 ~ 5.2

La-biphenyl ZEKE spectrum 36516 cm-1 ~ 3.5 FWHM ~ 6 cm-1 Expt. ~ 5.5 ~ 5.3 ~ 5.2

La-biphenyl ZEKE spectrum 5.5 3.5

Observed transition and vibrations (cm-1) IE overestimated by 13 % Expt. Theo.

Ti-biphenyl ZEKE spectrum FWHM ~ 15 cm-1 Expt.

Ti-biphenyl ZEKE spectrum 194 FWHM ~ 15 cm-1 Expt.

Ti-biphenyl ZEKE spectrum 350 194 FWHM ~ 15 cm-1 Expt.

Ti-biphenyl ZEKE spectrum 350 194 FWHM ~ 15 cm-1 194 Expt.

Ti-biphenyl ZEKE spectrum 350 194 FWHM ~ 15 cm-1 326 194 Expt.

Ti-biphenyl ZEKE spectrum 350 194 FWHM ~ 15 cm-1 326 194 208 Expt.

Ti-biphenyl ZEKE spectrum 350 194 FWHM ~ 15 cm-1 326 194 208 0-0 350 Expt. 43842 cm-1

Ti-biphenyl ZEKE spectrum 350 43842 cm-1 194 326 194 208 350 Expt. 4A  5A

Ti-biphenyl ZEKE spectrum 350 43842 cm-1 194 326 194 208 350 Expt. 4A  3A 4A  5A

Ti-biphenyl ZEKE spectrum 350 43842 cm-1 194 326 194 208 350 Expt. 2A  3A 4A  3A 4A  5A

Ti-biphenyl ZEKE spectrum 350 43842 cm-1 194 326 194 208 350 Expt. Clam 2B1  3B1 2A  3A 4A  3A 4A  5A

Ti-biphenyl ZEKE spectrum 350 43842 cm-1 194 326 194 208 350 Expt. Clam 2B1  1A1 2B1  3B1 2A  3A 4A  3A 4A  5A

Ti-biphenyl ZEKE spectrum 350 43842 cm-1 194 326 194 208 350 Expt. Clam 2B1  1A1 2B1  3B1 2A  3A 4A  3A 4A  5A

Observed transition and vibrations (cm-1) IE overestimated by 6 % Expt. Theo.

Observed transition and vibrations (cm-1) IE overestimated by 6 % Expt. Theo.