Time Series Analysis of Particles and Fields data

Slides:



Advertisements
Similar presentations
RHESSI Studies of Solar Flare Hard X-Ray Polarization Mark L. McConnell 1, David M. Smith 2, A. Gordon Emslie 4, Martin Fivian 3, Gordon J. Hurford 3,
Advertisements

Evidence at Saturn for an Inner Magnetospheric Convection Pattern, Fixed in Local Time M. F. Thomsen (1), R. L. Tokar (1), E. Roussos (2), M. Andriopoulou.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
Radiation Belt Loss at the Magnetopause T. G. Onsager, J. C. Green, H. J. Singer, G. D. Reeves, S. Bourdarie Suggest a pitch-angle dependence of magnetopause.
Auxiliary slides. ISEE-1 ISEE-2 ISEE-1 B Locus of  = 90 degree pitch angles Will plot as a sinusoid on a latitude/longitude projection of the unit.
Physics of fusion power Lecture 11: Diagnostics / heating.
OpenGGCM Simulation vs THEMIS Observations in an Dayside Event Wenhui Li and Joachim Raeder University of New Hampshire Marit Øieroset University of California,
Finite Temperature Effects on VLF-Induced Precipitation Praj Kulkarni, U.S. Inan and T. F. Bell MURI Review February 18, 2009.
Magnetospheric Morphology Prepared by Prajwal Kulkarni and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global.
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
IES Calibration Modeling Phil Valek and Roman Gomez May 29, 2013.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
Cluster photoemission Aug 24, 2011.
CODIF Status Lynn Kistler, Chris Mouikis Space Science Center UNH July 6-8, 2005 Paris, France.
IMPRS June The principle of electrostatic analyzers Spherical deflection plates (radius R, plate distance d) with an applied voltage (U) let charged.
Cold plasma: a previously hidden solar system particle population Mats André and Chris Cully Swedish Institute of Space Physics, Uppsala.
THEMIS/SRR ESA- 1 UCB, 06/08/2003 THEMIS Electrostatic Analyzer (ESA) instrument David W. Curtis Space Sciences Laboratory University of California, Berkeley.
THEMIS SRR 1 UCB, June 8-9, 2003 Solid State Telescope Davin Larson SSL.
1 THEMIS Inner Magnetosphere Review, Dec 20, 2008 Summary of THEMIS results in the inner magnetosphere Future mission operations discussion: –Science targets.
Scott Thaller Van Allen Probes EFW meeting University of Minnesota June 10-12, 2014.
THEMIS ESA SWT ESA- 1 UCB, Aug ESA In-Flight Calibration and First Results J. McFadden, C. Carlson, D. Larson UC Berkeley SSL.
Simple Approach to Salvaging THEMIS ESA Moments Prior to Boom Deployment Vladimir Kondratovich David G. Sibeck.
Improving Detection Efficiency of a Space-based Ion Mass Spectrum Analyzer Anne Lamontagne, University of New Hampshire; Mark Popecki, UNH; Lynn Kistler,
Low-Altitude Mapping of Ring Current and Radiation Belt Results Geoff Reeves, Yue Chen, Vania Jordanova, Sorin Zaharia, Mike Henderson, and Dan Welling.
IMPORTANCE OF FAST MEASUREMENTS OF SOLAR WIND PARAMETERS AT THE IP SHOCK FRONT Moscow, February 6-10, 2012 Z. Němeček, J. Šafránková, L. Přech, O. Goncharov,
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
E.E. Antonova1,2, I.P. Kirpichev2,1, Yu.I. Yermolaev2
1 MAVEN PFP ICDR May 23-25, 2011 Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Particles and Fields Science Critical Design Review May ,
1 SWEA pre-CDR Peer Review Particles and Fields Package (PFP) SWEA pre-CDR Peer Review Integration and Test 2011 March 29 Dave Mitchell.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
How ARTEMIS Contributes to Key NLSI Objectives C.T. Russell, J. Halekas, V. Angelopoulos, et al. NLSI Lunar Science Conference Ames Research Center Monday,
Electric field, electric potential, and ‘density’ measurements at quasi-perpendicular collisionless shocks: Cluster/EFW measurements Stuart D. Bale, Ryan.
ESS 265Time Series Analysis1 Time Series Analysis of Particles and Fields data Magnetopause sounding Materials in:
THEMIS SOCScience Data Products − 1March 29, 2006 Science Data Products Timothy Quinn.
47th Annual Meeting of the Division of Plasma Physics, October 24-28, 2005, Denver, Colorado ECE spectrum of HSX plasma at 0.5 T K.M.Likin, H.J.Lu, D.T.Anderson,
CAMMICE Science Report March 31, 2006 There will be two sections to the report: 1.A discussion on the inter-comparison of the responses of the MICS, Hydra,
SST- Solid State Telescope ESA - Electrostatic Analyzer Science Measurement and Operational Requirements.
ESS 265Low Energy Particle Instruments 1 Retarding Potential Analyzers In the ionosphere, mount along ram velocity, measure species densities –Ram speed.
Status_Penetrating_Radiation Flag Branislav Mihaljčić, A Fazakerley 1.
Reconstructing the spacecraft potential of Cluster when in active control and other issues Maria Andriopoulou Klaus Torkar Rumi Nakamura Space Research.
15 th CAA Cross-Calibration Workshop, 17th – 19th April 2012, UCL, London PEACE OPS TEAM Presented by Natasha Doss UCL Department of Space and Climate.
14 th CAA Cross-Calibration Workshop, 5th – 7th October 2011, York, UK PEACE OPS TEAM Presented by Natasha Doss UCL Department of Space and Climate Physics.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Detection of photoeletrons from the EFW probes A Fazakerley et al.
CAA 6 th Cross Cal Meeting RAL, th Oct 2007 RAPID/IES Calibration Status J.A. Davies.
CODIF CORSS-CALIBRATIONS C. Mouikis, L. Kistler, K. Genestreti UNH 10th CAA Cross-Calibration meeting L'Observatoire de Paris, Paris, 2-4 November 2009.
26th Oct 2006CAA cross cal meeting, MSSL RAPID Calibration Status RAPID team.
20 th CAA Cross-Calibration Workshop MPS, Göttingen, Germany Oct Ways of Measuring DC Electric Field: Who Does it Correctly?
Status of CIS Calibration and Archival Activities Iannis Dandouras, Alain Barthe, Lynn Kistler, and the CIS Team 4th CAA Cross-Calibration Meeting LPCE,
CIS Calibration Status Lynn Kistler, Chris Mouikis Adrian Blagau Iannis Dandouras, Alain Barthe 22 th Cross-Calibration Meeting, Tenerife, November 2015.
CODIF Calibration Status Lynn Kistler Space Science Center UNH Mar 25-27, 2009 Cambridge, UK.
THEMIS Science Progress NASA/GSFC, Oct 26, 2007
10th CAA Operations Review Annual Report of the CIS Experiment
Olga Khabarova 1, valentina zharkova 2 & vladimir kuznetsov 1
RAPID/IES Calibration Status Rutherford Appleton Lab
ARTEMIS – solar wind/ shocks
Cross-Calibration Meeting ESTEC, February 2006
Solar Wind Core Electrons
Progress Toward Measurements of Suprathermal Proton Seed Particle Populations J. Raymond, J. Kohl, A. Panasyuk, L. Gardner, and S. Cranmer Harvard-Smithsonian.
THEMIS multi-spacecraft observations of a 3D magnetic
Databases for THEMIS and GEOTAIL Magnetopause Crossings at GSFC
Velocity Distribution and Temperature
Earth’s Ionosphere Lecture 13
UVIS Calibration Update
UVIS Calibration Update
Space activities at Charles University
ROSETTA simulations on SPIS for DFMS ion measurements
THEMIS Dayside Lessons learned from the coast phase and the 1st dayside season Current plans for the 2nd dayside season and the extended phases.
Richard B. Horne British Antarctic Survey Cambridge UK
Homework #7, Due June 3rd Find a THEMIS interval of interest to your research. Read the thm_sst_cleanup.pro and crib_sst_contamination.pro routines. Plot.
Presentation transcript:

Time Series Analysis of Particles and Fields data Potential subtraction Density computation from three sources (Ne, Ni, scpot) Cold plasma detection Next opportunity: Velocity, pressure corrections from SST Waves analysis Suggested reading: McFadden et al, THEMIS ESA instrument and calibration (Space Sci. Reviews) McFadden et al, ESA first results (Space Sci. Reviews) McFadden et al, Structure of plasmaspheric plumes (GRL) Materials in: http://www.igpp.ucla.edu/public/vassilis/ESS265/20080519 class_notes_time_series_analysis_B.ppt thm_code/thm_pot2dens.pro, thm_part_dist.pro, thm_part_moments.pro (for cleanup) esa_particles/get_th?_pe?r.pro potential_correction.pro; density_all.pro; cold_ions.pro ESS 265 Time Series Analysis1

Potential Subtraction Automatic subtraction: Read spacecraft potential (Vsc) From spheres: Vsc=-(V3+V4)/2. Add 1V offset Accounts for spheres driven above plasma potential Correct to infinity ( x 1.15 ) Sensor voltage is not exactly at zero+offset because Debye length is very large. A +15% correction to account for plasma potential at infinite sphere distance. Reduce electron energies E'elec= Eelec – Vsccorrected Increase ion energies E'ion= Eion + Vsccorrected Cannot do if EFI is not deployed Right hand side is an example Must do manually Determine Vsc from spectrum Manually correct potential Ni Ne ESS 265 Time Series Analysis2

Potential Subtraction Manual scpot subtraction: When EFI not deployed: Read scpot value (~0) Correct based on spectra Recompute moments Use full or reduced distributions From peef get N,V,T From peer (6 angles): N,T Ne = Ni ;>>>>>>potential_correction.pro<<<<<<<<<<<<<<<<<<<<<<<<<<<< timespan,'7 11 07/10',2,/hours sc='a‘ thm_load_state,probe=sc,/get_support thm_load_fit,probe=sc,data='fgs',coord='gsm',suff='_gsm' thm_load_fit,probe=sc,data='fgs',coord='dsl',suff='_dsl' thm_load_mom,probe=sc ; L2: onboard processed moms thm_load_esa,probe=sc ; L2: ground processed gmoms, omni spec ; ; Modify sc potential thm_load_esa_pkt,probe=sc get_data,'tha_pxxm_pot',data=tha_pxxm_pot,dlim=dlim tha_pxxm_pot.y(*)=10. ; eV store_data,'tha_pxxm_pot_corr', $ data={x:tha_pxxm_pot.x,y:tha_pxxm_pot.y}, dlim=dlim ; Recompute moments thm_part_moments, probe = sc, instrum = 'peer', $ scpot_suffix = '_pxxm_pot_corr',$ mag_suffix = '_fgs_dsl', tplotnames = tn options,'tha_peer_density','colors',['b'] options,'tha_peim_density','colors',['r'] store_data,'tha_pexm_density', $ data='tha_peer_density tha_peim_density' options,'tha_pexm_density','colors',['b','r'] options,'tha_pe?m_density',yrange=[0,2] options,'tha_pexm_density',ylog=0 tplot,'tha_fgs_gsm tha_pexm_density tha_pe?r_en_eflux' ESS 265 Time Series Analysis3

Density from S/C Potential, Other ;>>>>>>density_all.pro<<<<<<<<<<<<<<<<<<<<<<<<<<<< timespan,'8 1 16/14:00',6,/hours sc='d' thm_load_state,probe=sc,/get_supp thm_load_fit,probe=sc,data='fgs',coord='gsm',suff='_gsm' thm_load_fit,probe=sc,data='fgs',coord='dsl',suff='_dsl' thm_load_mom,probe=sc ; L2: onboard processed moms thm_load_esa,probe=sc ; L2: ground processed gmoms, omni spectra thm_load_sst,level=2,probe=sc ; NOW CONSTRUCT DENSITY FROM SCPOT tinterpol_mxn,'thd_peer_t3','thd_pxxm_pot',newname='thd_peer_t3_int' get_data,'thd_pxxm_pot',data=thd_pxxm_pot,dl=dl get_data,'thd_peer_t3_int',data=thd_peer_t3_int thm_pot2dens,thd_pxxm_pot.y,thd_pxxm_potdens, $ Te=total(thd_peer_t3_int.y,2)/3. ; New code, in class materials store_data,'thd_pxxm_potdens', $ data={x:thd_pxxm_pot.x,y:thd_pxxm_potdens},dl=dl ; NOW PLOT UNCORRECTED DENSITIES store_data,'thd_peer_en_eflux_pot',data='thd_peer_en_eflux thd_esa_pot' options,'thd_fgs_gsm',yrange=[-150,150] options,'thd_peer_density',colors=['r'] options,'thd_peir_density',colors=['b'] options,'thd_pxxm_potdens',colors=['g'] options,'thd_pxxm_potdens',ylog=1 options,'thd_peer_t3',ylog=0 options,'thd_pxxm_pot',ylog=0 options,'thd_pe?r_en_eflux*',yrange=[7.,25000.] store_data,'thd_densities', $ data='thd_peir_density thd_peer_density thd_pxxm_potdens' tplot,'thd_fgs_gsm thd_peer_t3 thd_pxxm_pot thd_densities '+ $ 'thd_psef_en_eflux thd_peer_en_eflux_pot thd_peir_en_eflux' Ne = Ni Nscpot ESS 265 Time Series Analysis4

Correct Densities: Issues Photoelectrons on Ne: Have been corrected already, as EFI operating Both on board and through ground processing Primary and secondary electrons from >10keV electrons entering i/e aperture Electron ESA, primaries and secondaries (below about 40eV): Ne>Ni Primaries, grazing incidence, degraded energy Secondaries from electron collisions with walls Secondary electrons in ion ESA (below about 500eV): Ni > Ne Must be >2keV to overcome post-acceleration in front of McP When significant flux of energetic electrons is present See 16:00 and 16:30 UT injections on THD, 2008-01-16 Can result in either Ne>Ni or Ni>Ne depending on Scattered flux relative to electron/ion fluxes Correct by integrating density above secondaries > 40eV for electrons > 100eV for ions Background radiation near radiation belts Penetrates ESA walls Produces constant background eflux as function of energy Most evident in ions which have lower flux Correct by removing constant eflux background at all energies ESS 265 Time Series Analysis5

Correct Densities: Solution ;>>>>>>density_all.pro(continued)<<<<<<<<<<<<<<<<<<<< ; CORRECT DENSITIES ; load L0 omni spectra, all ESA data in memory thm_load_esa_pkt,probe=sc ; ; PEIR MOMS/SPECTRA ; Remove radiation and integrate above 40eV to remove scattered electrons thm_part_moments, probe = sc, instrum = 'peir', scpot_suffix = '_pxxm_pot', $ trange=['8 1 16/14:00','8 1 16/20:00'], erange=[0,31], $ mag_suffix = '_fgs_dsl', tplotnames = tn, verbose = 2, $ /bgnd_remove ; names are output into tn New code, in class materials ; PEER MOMS/SPECTRA thm_part_moments, probe = sc, instrum = 'peer', scpot_suffix = '_esa_pot', $ trange=['8 1 16/14:00','8 1 16/20:00'], erange=[0,24], $ ; scpot determination of density, with (now/see above) better temperature tinterpol_mxn,'thd_peer_t3','thd_pxxm_pot',newname='thd_peer_t3_int' get_data,'thd_pxxm_pot',data=thd_pxxm_pot,dl=dl get_data,'thd_peer_t3_int',data=thd_peer_t3_int thm_pot2dens,thd_pxxm_pot.y,thd_pxxm_potdens, $ Te=total(thd_peer_t3_int.y,2)/3. store_data,'thd_pxxm_potdens', $ data={x:thd_pxxm_pot.x,y:thd_pxxm_potdens},dl=dl tplot,'thd_fgs_gsm thd_peer_t3 thd_pxxm_pot thd_densities ' + $ 'thd_psef_en_eflux thd_peer_en_eflux_pot thd_peir_en_eflux' Ni requires better background removal (in progress) ESS 265 Time Series Analysis6

Cold Ion Detection, Using Nscpot ;>>>>>>cold_ions.pro<<<<<<<<<<<<<<<<<<<< timespan,'7 6 8/21:00',3,/hours & sc='c' thm_load_state,probe=sc,/get_supp thm_load_fit,probe=sc,data='fgs',coord='gsm',suff='_gsm' thm_load_fit,probe=sc,data='fgs',coord='dsl',suff='_dsl' thm_load_mom,probe=sc thm_load_esa,probe=sc ; NOW CONSTRUCT DENSITY FROM SCPOT tinterpol_mxn,'thc_peer_t3','thc_pxxm_pot', $ newname='thc_peer_t3_int' get_data,'thc_pxxm_pot',data=thc_pxxm_pot,dl=dl get_data,'thc_peer_t3_int',data=thc_peer_t3_int thm_pot2dens,thc_pxxm_pot.y,thc_pxxm_potdens, $ Te=total(thc_peer_t3_int.y,2)/3. store_data,'thc_pxxm_potdens', $ data={x:thc_pxxm_pot.x,y:thc_pxxm_potdens},dl=dl ; NOW PLOT DENSITIES (NO SCATTER/NO RADIATION) store_data,'thc_peer_en_eflux_pot', $ data='thc_peer_en_eflux thc_pxxm_pot' options,'thc_fgs_gsm',yrange=[-70,100] options,'thc_peer_density',colors=['r'] options,'thc_peir_density',colors=['b'] options,'thc_pxxm_potdens',colors=['g'] options,'thc_pxxm_potdens',ylog=1 options,'thc_peer_t3',ylog=0 options,'thc_pxxm_pot',ylog=0 options,'thc_pe?r_en_eflux*',yrange=[7.,25000.] store_data,'thc_densities',data='thc_peir_density ' + $ thc_peer_density thc_pxxm_potdens' tplot,'thc_fgs_gsm thc_peir_velocity_gsm thc_densities ‘+ $ thc_psef_en_eflux thc_peer_en_eflux_pot thc_peir_en_eflux' Nscpot > Ne=Ni Plasmasphere ! ESS 265 Time Series Analysis7

Cold Ion Detection, Issues When Vscpot > Vthion then Cold ions cannot overcome barrier Ni < Vscpot When Vscpot < EESAmin then: Electrons are missed Cold electrons missed: Ne < Ni Situation is improved when Vi large Cold ions can be detected Ni agrees with Nscpot When Ekinetic - eVsc > EESAmin Hot plasma (Ne=Ni=Nscpot) ESS 265 Time Series Analysis8

Cold Ion Detection, When Vi large Situation is improved when Vi large Cold ions can be detected Ni agrees with Nscpot When Ekinetic - eVsc > EESAmin ;>>>>>>cold_ions.pro (continued)<<<<<<<<<<<<<<<<<<<< ; tvectot,'thc_peir_velocity_gsm', $ newname='thc_peir_velocity_gsmt' tvectot,'thc_peir_velocity_gsm',tot='thc_peir_velocity_t‘ tinterpol_mxn,'thc_peir_velocity_t', $ 'thc_pxxm_pot',newname='thc_peir_velocity_tint' get_data,'thc_peir_velocity_tint',data=thc_peir_velocity_tint get_data,'thc_pxxm_pot',data=thc_pxxm_pot eflow=1000.*(thc_peir_velocity_tint.y/310.)^2 - $ thc_pxxm_pot.y; in eV store_data,'thc_eflow',data={x:thc_peir_velocity_tint.x,y:eflow} store_data,'thc_peir_en_eflux-n-flow', $ data='thc_peir_en_eflux thc_eflow' options,'thc_peir_en_eflux*',yrange=[7.,25000.] tplot,'thc_fgs_gsm thc_peir_velocity_gsmt thc_densities ', $ thc_psef_en_eflux thc_peer_en_eflux_pot thc_peir_en_eflux-n-flow' tlimit,['7 6 8/22:00','7 6 8/22:30'] ESS 265 Time Series Analysis9

Multi-spacecraft Analysis: Calibration ESA instruments received first an absolute calibration In the sheath, avoid unmeasured plasmaspheric cold ions, electrons, or solar wind beam Correct for energy dependent efficiencies Detector anode relative efficiencies (north/south asymmetry) Electron-ion relative efficiencies (based on density, account for solar wind composition) FGM calibration was done independently for each spacecraft Spin plane offsets determined routinely In the solar wind determine spin axis offsets Spin axis offset variation ~0.2nT over the mission ESS 265 Time Series Analysis10

Multi-spacecraft Analysis: ESA Inter-Calibration On all spacecraft, ions and electrons Detector anode relative efficiencies (north/south asymmetry) Sort ions and electrons separately in pitch-angle Apply low-order polynomial fit to pitch angle Determine anode efficiency that minimizes variance (a 1-2% effect) Large angle variance (systematic asymmetry) checked further Look at systematic flows during times expected to have zero Found none for ions in the magnetosphere Adjusted electron asymmetry (1-3%) in the sheath such that Vi = Ve ESS 265 Time Series Analysis11

Multi-spacecraft Analysis: ESA Inter-Calibration Detector energy relative efficiency Based on published data, private communications and simulations Main effect on ions is increase in g-factor due to fringe fields at grid Field from –2keV McP pre-acceleration potential leaks through zero volt grid into detector Collects scattered electrons, increases sensitivity of detector at low (<2keV) energies Themis, ions simulated Electrons Ions ESS 265 Time Series Analysis12

Multi-spacecraft Analysis: ESA Cross-Calibration THC was the trailblazer (EFI out); used as reference THC Electron sensor selected as reference THC Ion sensor cal’ed for energy, anode efficiency THC Ion sensor g-factor adjusted to match electron All other spacecraft also internally calibrated Cross-calibration as follows Use early string of pearls configuration Adjust Ni/Ne (0.99) based on WIND/SWE ~4% alphas Adjust THD/THC electron densities to match Adjust THE/THC … etc. For THA Time varying calibration ESA McP scrubbing Efficiency decreases due to water molecules venting Stabilizes after few months of operations Ignore ESS 265 Time Series Analysis13

Multi-spacecraft Analysis: ESA Absolute Calibration THC electrons THC and THD electrons versus WIND-SWE Time-shift WIND data WIND has plasma waves WIND density calibrated from plasma frequency Five intervals found in summer of ’07 Correct deficiency due to scpot below Emin Extend Maxwellian spectra to low energies Themis g-factors scaled to ~70% in Fall’07 In retrospect, were due to overestimate of energy efficiency at low energies THD electrons Wind, |B| THC, THD, |B| THC, THD, Ne Wind, |B| ESS 265 Time Series Analysis14

Multi-spacecraft Analysis: Calibration verification Find magnetopause crossings and sheath waves Expect quasi-static pressure balance Determine total pressure Ptotal = Pion + Pelectron + PB Show total pressure is constant across Method shows that pressure balance is observed Calibration is working, at least at low energies Higher energy component has been less tested PTot PB Pi Pe ESS 265 Time Series Analysis15

Multi-spacecraft Analysis: At the magnetopause ESS 265 Time Series Analysis16

Homework Find a THEMIS 2-4 hour interval of your interest Use at least two satellites Plot ion and electron density Plot density derived from spacecraft potential Explain the differences ESS 265 Time Series Analysis17