Tactics for preclinical validation of receptor-binding radiotracers

Slides:



Advertisements
Similar presentations
Volume 20, Issue 3, Pages (March 2013)
Advertisements

Volume 13, Issue 8, Pages (August 2006)
Cellular penetration and nuclear importation properties of 111In-labeled and 123I- labeled HIV-1 tat peptide immunoconjugates in BT-474 human breast cancer.
Radiosynthesis and initial characterization of a PDE10A specific PET tracer [18F]AMG 580 in non-human primates  Dah-Ren Hwang, Essa Hu, Jennifer R. Allen,
Lotte B. Bertelsen, Mette Hagensen, Morten Busk, Rui Zhang, Anne S
Carbon-11 epidepride: a suitable radioligand for PET investigation of striatal and extrastriatal dopamine D2 receptors  Oliver Langer, Christer Halldin,
Berend van der Wildt, Micha M. M. Wilhelmus, Esther J. M
UV as an Amplifier Rather Than Inducer of NF-κB Activity
Volume 10, Issue 2, Pages (August 2009)
Sophie Lancelot, Luc Zimmer  Trends in Pharmacological Sciences 
Volume 12, Issue 1, Pages (January 2005)
Elizabeth V. Goldfarb, Marvin M. Chun, Elizabeth A. Phelps  Neuron 
Volume 36, Issue 5, Pages (December 2009)
Volume 17, Issue 6, Pages (June 2010)
Volume 14, Issue 5, Pages (May 2007)
Yihan Wang, Michael A. Shia, Thomas G. Christensen, Steven C. Borkan 
Volume 19, Issue 2, Pages (February 2017)
Development and Migration of Plasma Cells in the Mouse Lymph Node
Volume 20, Issue 3, Pages (March 2013)
Volume 18, Issue 5, Pages (May 2010)
Volume 48, Issue 5, Pages (December 2005)
Volume 23, Issue 1, Pages (July 2005)
Volume 45, Issue 3, Pages (February 2012)
Volume 47, Issue 1, Pages (July 2012)
A Novel Analgesic Isolated from a Traditional Chinese Medicine
Division of Labor in an Oligomer of the DEAD-Box RNA Helicase Ded1p
Volume 58, Issue 4, Pages (October 2000)
Volume 86, Issue 3, Pages (May 2015)
Volume 19, Issue 10, Pages (June 2017)
Amy R Mohn, Raul R Gainetdinov, Marc G Caron, Beverly H Koller  Cell 
Structure-Guided Design of Fluorescent S-Adenosylmethionine Analogs for a High- Throughput Screen to Target SAM-I Riboswitch RNAs  Scott F. Hickey, Ming C.
Volume 22, Issue 1, Pages (January 2014)
Mechanism of Carbamate Inactivation of FAAH: Implications for the Design of Covalent Inhibitors and In Vivo Functional Probes for Enzymes  Jessica P.
Glycolate Oxidase Is a Safe and Efficient Target for Substrate Reduction Therapy in a Mouse Model of Primary Hyperoxaluria Type I  Cristina Martin-Higueras,
Volume 24, Issue 8, Pages (August 2016)
μ-Opioid Receptor and CREB Activation Are Required for Nicotine Reward
Johnson Cheung, Michael E.P. Murphy, David E. Heinrichs 
Volume 90, Issue 3, Pages (May 2016)
Volume 19, Issue 4, Pages (April 2017)
Volume 88, Issue 2, Pages (October 2015)
Volume 13, Issue 8, Pages (August 2006)
Volume 23, Issue 6, Pages (June 2016)
Volume 22, Issue 5, Pages (January 2018)
Volume 6, Issue 4, Pages (October 2007)
Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking  C. Daniel Meliza, Yang Dan  Neuron  Volume.
Volume 17, Issue 2, Pages (January 2007)
Volume 12, Issue 1, Pages (January 2005)
Volume 25, Issue 7, Pages (July 2017)
Volume 64, Issue 5, Pages (December 2009)
Characterization of Monoacylglycerol Lipase Inhibition Reveals Differences in Central and Peripheral Endocannabinoid Metabolism  Jonathan Z. Long, Daniel.
Volume 26, Issue 5, Pages (May 2018)
Volume 19, Issue 9, Pages (September 2012)
Ca2+ Influx through Distinct Routes Controls Exocytosis and Endocytosis at Drosophila Presynaptic Terminals  Hiroshi Kuromi, Atsuko Honda, Yoshiaki Kidokoro 
Volume 96, Issue 3, Pages (February 1999)
Yi Tang, Jianyuan Luo, Wenzhu Zhang, Wei Gu  Molecular Cell 
N. Dietis, J. McDonald, S. Molinari, G. Calo, R. Guerrini, D. J
Volume 18, Issue 5, Pages (May 2011)
Volume 17, Issue 11, Pages (November 2010)
Functional MRI Evidence for LTP-Induced Neural Network Reorganization
Rinat Nahum-Levy, Dafna Lipinski, Sara Shavit, Morris Benveniste 
Volume 56, Issue 3, Pages (November 2014)
Fig. 1. In vivo–in vitro validation of [11C]UCB-J as a synaptic density biomarker in the baboon brain. In vivo–in vitro validation of [11C]UCB-J as a synaptic.
Michael J. Lee, Henrik G. Dohlman  Current Biology 
Volume 11, Pages (January 2019)
Volume 21, Issue 3, Pages (March 2014)
Supratim Ray, John H.R. Maunsell  Neuron 
Molecular Therapy - Nucleic Acids
Dissecting the Multifactorial Causes of Immunodominance in Class I–Restricted T Cell Responses to Viruses  Weisan Chen, Luis C. Antón, Jack R. Bennink,
Mechanism of Carbamate Inactivation of FAAH: Implications for the Design of Covalent Inhibitors and In Vivo Functional Probes for Enzymes  Jessica P.
Yuki Hara, Christoph A. Merten  Developmental Cell 
Presentation transcript:

Tactics for preclinical validation of receptor-binding radiotracers Susan Z. Lever, Kuo-Hsien Fan, John R. Lever  Nuclear Medicine and Biology  Volume 44, Pages 4-30 (January 2017) DOI: 10.1016/j.nucmedbio.2016.08.015 Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 1 Structures of TPCNE, SA4503 and the molecular hybrid, E-IA-DM-PE-PIPZE. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 2 Structures and σ1 receptor binding affinities of SA4503 and analogs, that provides a rationale for modification of E-IA-DM-PE-PIPZE to E-IA-BF-PE-PIPZE. aData taken from [46]; bData taken from [64]; cData taken from [63]. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 3 (R)-(+)- and (S)-(-)-enantiomers of the σ1 receptor PET radioligand [18F]-fluspidine. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 4 Inhibition of [3H]-PTZ specific binding to σ1 receptors by E-IA-BF-PE-PIPZE. Data shown are means ± SEM for 4 assays, each performed in duplicate. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 5 Preparative reversed-phase HPLC for radiosynthesis of [125I]-E-IA-BF-PE-PIPZE showing UV and Radioactivity traces of the crude reaction mixture. Conditions: column, NovaPak® C18, 8 x 100 mm; mobile phase, 23% organic (1:1 MeOH:CH3CN), 77% aqueous (Et3N/HOAc); flow rate: 3.8 mL/min. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 6 Top panel: Reversed-phase HPLC chromatogram of purified [125I]-E-IA-BF-PE-PIPZE. Bottom panel: HPLC chromatogram of purified [125I]-E-IA-BF-PE-PIPZE with E-IA-BF-PE-PIPZE added to demonstrate co-elution. Conditions: column, NovaPak® C18, 8 x 100 mm; mobile phase, 28% organic (1:1 MeOH:CH3CN), 72% aqueous (Et3N/HOAc); flow rate: 3.8 mL/min. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 7 Top panel: Analytical HPLC chromatograms of sequential E-IA-BF-PE-PIPZE injections showing lower peak areas associated with decreasing mass (280 nm). Bottom panel: Standard curve relating mass to peak area, constructed so the mass can be determined for a sample of [125I]-E-IA-BF-PE-PIPZE having known radioactivity, allowing calculation of specific radioactivity. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 8 Association (Panel A) and dissociation (Panel B) kinetics for [125I-E-IA-BF-PE-PIPZE (0.16 nM) binding in mouse brain membranes, 0.15 mg protein/mL, at 37 °C. Data shown are from representative experiments performed in duplicate. Haloperidol (1.0 μM) was used to define non-specific binding, and also to initiate radioligand dissociation (Panel B) following the initial 180 min incubation to reach steady-state binding. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 9 Panel A: Saturation binding of [125I]-E-IA-BF-PE-PIPZE (0.016–1.6 nM) to mouse brain membranes (0.15 mg protein/mL) at 37 °C with a 180 min incubation and haloperidol (1.0 μM) to define non-specific binding. Panel B: Traditional Rosenthal plot for visualization of the relationship between bound radioligand, and the ratio of bound radioligand to free radioligand. Data are from a representative experiment performed in duplicate, and replicated four times to give Kd 0.24 ± 0.01 nM and Bmax 472 ± 13 fmol/mg protein by non-linear regression. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 10 Pearson correlation of ligand inhibitory potencies, as pKi values, determined in CD-1® mouse brain membranes for [125I]-E-IA-BF-PIPZE (Table 2) with published data for [3H]-PTZ [58]. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 11 Temporal biodistribution in brain and selected peripheral organs after administration of [125I-E-IA-BF-PE-PIPZE (2.5 μCi, i.v.) to male CD-1® mice. Non-specific binding defined by BD1063 (5.0 μmol/kg, i.v.) pretreatment at each time. Values are %ID/g (means ± SEM, n = 4). Non-visible error bars are contained within the symbols. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 12 Effects of pretreatments with various σ receptor ligands (2.5 μmol/kg, i.v.) on the uptake of [125I-E-IA-BF-PE-PIPZE at 60 min in brain and selected peripheral organs of male CD-1® mice. Values are %ID/g (means ± SD, n = 4). Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 13 Effects of pretreatments with various σ receptor ligands (2.5 μmol/kg, i.v.) on the uptake of [125I-E-IA-BF-PE-PIPZE at 60 min in male CD-1® mouse brain regions. Values are %ID/g (means ± SD, n = 4). Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 14 Reversed-phase HPLC radiochromatograms of extracts from brain (A), lung (B) and liver (C), as well as a urine sample (D) 60 min after administration of [125I]-E-IA-BF-PE-PIPZE (100 μCi, i.v.) to a male CD-1® mouse. The peak at 8.8 min corresponds to unmetabolized [125I]-E-IA-BF-PE-PIPZE. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 15 Pharmacokinetic comparison of whole brain uptake of [125I]-E-IA-DM-PE-PIPZE [55] and [125I]-E-IA-BF-PE-PIPZE in male CD-1® mice. Values are %ID/g (means ± SEM, n = 4; 2.5 μCi/mouse, i.v.). Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 16 [125I]-E-IA-BF-PE-PIPZE specific binding in vivo correlates (Pearson r = 0.86, p = 0.003) with [125I]-E-IA-DM-PE-PIPZE specific binding [58] in vivo for 9 regions of male CD-1® mouse brain. Values are %ID/g (means, n = 4). Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 17 Selective labeling of cerebral σ1 receptors in horizontal sections (20 μm) from CD-1® mouse brain using [125I]-E-IA-BF-PE-PIPZE (0.1 nM). Left image: Total binding. Right image: Non-specific binding defined by inclusion of BD1063 (1.0 μM). Calibrated pseudo-color palette (fmol/mg tissue) is shown on the far right. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 18 Pearson correlation of quantitative autoradiography data obtained using [125I]-E-IA-BF-PE-PIPZE in vitro in CD-1® mouse brain sections with autoradiography data reported for [3H](+)-SKF10,047 ex vivo in CD-1® mouse brain [178]. PAG = periaqueductal gray; Cb = cerebellum; TCtx = temporal cortex; FCtx = frontal cortex; CA1, CA2, CA3 = fields of the hippocampus; DG = dentate gyrus; CCtx = cingulate cortex; ECtx = entorhinal cortex; CPu = caudate putamen. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 19 Visualization of σ1 receptors in horizontal sections (20 μm) from CD-1® mouse brain 60 min after administration of [125I]-E-IA-DM-PE-PIPZE (150 μCi, i.v.). Left image: Total binding, saline-treated control. Center image: Reduced binding in the presence of (-)-cocaine (100 μmol/kg, i.p.). Right image: Non-specific binding defined by BD1063 (2.5 μmol/kg, i.v.). Calibrated pseudo-color palette (fmol/mg tissue) is shown on the far right. Figure and legend adapted, with permission, from [58]. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Fig. 20 Panel A: PET/MR coronal images using [18F]-FTC-146 in wild type (WT) and σ1 receptor knockout (S1R-KO) mouse brain, with and without blocking by BD1047 (1 mg/kg). Ctx = cortex; cp = caudate putamen; hc = hippocampus; cer = cerebellum. Panel B: Pharmacokinetics of [18F]-FTC-146 in whole brain (WT and S1R-KO) without and with blocking. Figure and legend adapted, with permission, from [200]. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Chart 1 Radiopharmaceutical paradigm. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Chart 2 Synthesis and early preclinical validation experiments. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions

Scheme 1 Synthetic route for preparation of E-IA-BF-PE-PIPZE/[125I]-E-IA-BF-PE-PIPZE. Nuclear Medicine and Biology 2017 44, 4-30DOI: (10.1016/j.nucmedbio.2016.08.015) Copyright © 2016 Elsevier Inc. Terms and Conditions