5K or not? & TTF module thermal modeling update

Slides:



Advertisements
Similar presentations
Thermal performance analysis and measurements for the accelerator prototype modules of European XFEL X.L. Wang, W. Maschmann, J. Eschke, O. Sawlanski,
Advertisements

Analysis of Simple Cases in Heat Transfer P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Gaining Experience !!!
MICE Spectrometer Solenoid Review Some inputs for the in person meeting to be discussed at the November 13, 2009 phone meeting P.Fabbricatore on behalf.
RF-Accelerating Structure: Cooling Circuit Modeling Riku Raatikainen
Superconducting Accelerating Cryo-Module Tests at DESY International Workshop on Linear Colliders 2010 (ECFA-CLIC-ILC Joint Meeting) Denis Kostin, MHF-SL,
TDR Part 2: 3.3 Cavity Integration (10 pages) H. Hayano Baseline Design based on the meeting discussion.
R&D Status and Plan on The Cryostat N. Ohuchi, K. Tsuchiya, A. Terashima, H. Hisamatsu, M. Masuzawa, T. Okamura, H. Hayano 1.STF-Cryostat Design 2.Construction.
RFQ Thermal Analysis Scott Lawrie. Vacuum Pump Flange Vacuum Flange Coolant Manifold Cooling Pockets Milled Into Vanes Potentially Bolted Together Tuner.
Heat load study of cryomodule in STF
Stress and cool-down analysis of the cryomodule Yun He MLC external review October 03, 2012.
Lutz Lilje DESY -MPY- Module Issues XFEL Linac Review R. Lange/L. Lilje Ongoing Tests Module Designs Future tests.
Type IV Cryomodule Proposal (T4CM) Don Mitchell, 16 JAN 2006.
Cryomodule Design and R&D during the EDR phase Robert Kephart With input from the T4 CM Collaboration.
NML High Energy Beam Absorbers and Dump 29-August-2011 Beams-doc-3928.
Stress and Cool-down Analysis Yun HE MLC Internal Review 9/5/2012Yun HE, MLC Internal Review1.
CRYOGENICS FOR MLC Cryogenic Piping in the Module Eric Smith External Review of MLC October 03, October 2012Cryogenics for MLC1.
Plug compatibility Document ILC10 cavity integration session H. Hayano.
CLIC Prototype Test Module 0 Super Accelerating Structure Thermal Simulation Introduction Theoretical background on water and air cooling FEA Model Conclusions.
Rossana Bonomi ESS Cryomodule Status Meeting, 9/1/2013.
LCWS13, November 2013 At the University of Tokyo W.–D. Möller Status of the TTF3 RF Power Coupler.
5 K Shield Study of STF Cryomodule Norihito Ohuchi, Norio Higashi KEK Xu QingJin IHEP 2008/3/3-61Sendai-GDE-Meeting.
Test plan for SPL short cryomodule O. Brunner, W. Weingarten WW 1SPL cryo-module meeting 19 October 2010.
1 VI Single-wall Beam Pipe Option: status and plans M.Olcese TMB June 6th 2002.
1Matthias LiepeAugust 2, 2007 Future Options Matthias Liepe.
Summery of the power coupler session at the LCWS13 workshop E. Kako W.-D. Möller H. Hayano A. Yamamoto All members of SCRF WG November 14, 2013.
CRYOGENICS FOR MLC Cryogenic Principle of the Module Eric Smith External Review of MLC October 03, October 2012Cryogenics for MLC1.
Cryostat / Cryogenics Summary and (Proposed) Conclusions T. Peterson 25 April 2008.
Rossana Bonomi R. Bonomi TE-MSC-CMI SPL Seminar 2012.
S1 global: thermal analysis TILC09, April 19th, 2009 Serena Barbanotti Paolo Pierini.
Cryogenic scheme, pipes and valves dimensions U.Wagner CERN TE-CRG.
Date 2007/Sept./12-14 EDR kick-off-meeting Global Design Effort 1 Cryomodule Interface definition N. Ohuchi.
SPL cryomodule specification meeting, CERN 19th October 2010 SPL cryomodule specification: Goals of the meeting SPL cryomodule specification: Goals of.
5 K Shield Study of STF Cryomodule (up-dated) Norihito Ohuchi KEK 2008/4/21-251FNAL-SCRF-Meeting.
Plug compatibility discussion TILC09 cavity integration session H. Hayano.
CW Cryomodules for Project X Yuriy Orlov, Tom Nicol, and Tom Peterson Cryomodules for Project X, 14 June 2013Page 1.
Comments from the SNS Cryostat Design Review February 2010 Tom Peterson, Fermilab 15 February 2010.
HL-LHC-UK Thermal Shield Update Niklas Templeton 07/03/2016.
Superconducting Accelerating Cryo-Module Tests at DESY TESLA Technology Collaboration (TTC) Meeting, February 28 - March , Milano, Italy Denis Kostin,
Cryogenics for SuperB IR Magnets J. G. Weisend II SLAC National Accelerator Lab.
Spoke section of the ESS linac: - the Spoke cryomodules - the cryogenic distribution system P. DUTHIL (CNRS-IN2P3 IPN Orsay / Division Accélérateurs) on.
5K shield removal experiment in STF cryomodule Norihito Ohuchi 2008/11/181ILC08-GDE-Meeting (CHICAGO)
Development of Cryo-Module Test Stand (CMTS) for Fermi Lab (R.L.Suthar, Head,CDM, BARC) Cryo-Module Test stand (CMTS) is a very sophisticated equipment.
ILC : Type IV Cryomodule Design Meeting Main cryogenic issues, L. Tavian, AT-ACR C ryostat issues, V.Parma, AT-CRI CERN, January 2006.
FPC Thermalisation Update Niklas Templeton 16/6/16.
The Evolving ILC Project
BCP Analysis Update Thomas Jones 22/7/16.
TDR guideline discussion on Cavity Integration
Stress and cool-down analysis of the cryomodule
T5.2: Harmonization - Material and Component Reference
Meeting for S1-Global module design Cryomodule and Cryogenics
TTC Topical Workshop - CW SRF, Cornell 12th – 14th June 2013
Preparation for SC BTR Cryomodule
WG-1 Session Cavity Performance Cryomodule Performance
Norihito Ohuchi – KEK (presented by P. Pierini - INFN)
Sensors in the S1-G Cryomodules (Updated )
Thermal Shield Connection Study
TTF module thermal modeling
TBM thermal modelling status
High Gradient Cavities: Cost and Operational Considerations
TDR: Cryomodule Paolo Pierini.
ILC Cryogenic Systems Draft EDR Plan
Cryostat 5 K Thermal Shield -- Conclusions (Proposed)
TESLA Cryomodule Design Ratinales
CW accelerating module test progress at DESY
5K Shield Study & HL Measurements
CEPC Input Coupler Discuss 6th IHEP-KEK SCRF Collaboration Meeting
ILC Cryogenics -- Technical Design Report Planning
ANALYSIS OF THE HORN UNDER THERMAL SHOCK – FIRST RESULTS
Magnetic Field Sensors and Measurements in Cryomodules
Cryomodule Design for CW Operation 3.9 GHz considerations
Presentation transcript:

5K or not? & TTF module thermal modeling update Paolo Pierini, Serena Barbanotti INFN Sezione di Milano MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling Loads on the 5 K shield   5K Radiation 1,41 Supports 2,40 Input coupler 1,48 1,32 HOM coupler (cables) 0,29 1,82 HOM absorber 3,13 0,76 Current leads 0,47 Diagnostic cable 1,39 - Scales as Pfac Independent of G,Tf 10,56 3,04 Static, dynamic sum 4,37 5K Sum [W] 14,9 Temperature Level 2K RF load   7,46 Supports 0,60 - Input coupler 0,55 0,16 HOM coupler (cables) 0,01 0,18 HOM absorber 0,14 Beam tube bellows 0,36 Current leads 0,28 HOM to structure 1,20 Coax cable (4) 0,05 Instrumentation taps 0,07 Scales as Gfac 7,83 Scales as Pfac Independent of G,Tf 1,70 1,68 Static, dynamic sum 9,66 2K Sum [W] 11,4 lead to increase on static not the same MLI! provide thermal intercepts on the many penetrations! couplers x 8 (9) leads cables Shield surface provides surface for thermal strapping with small braids From Webex SCRF meeting on 5 K shield removal MAR-23-2008 TTF module thermal modeling

5 K shield removal: what happens @ 2K? From Tom Cryo spreadsheet (Feb07) 2K: 11.4 (1.7 s + 9.7 d) @ 700 W/W 5K: 15.0 (10.6 s + 4.4 d) @ 200 W/W 40K: 153.5 (59.2 s + 94.3 d) @ 16 W/W Sum 14.4 kW plug power for each module (no overcapacity) If all 5K load goes into 2K “as is” Plug power increased by 56% Need to provide same efficient radiation shield for the 2K mass, with at least 10 layers MLI protecting the 2K cold mass If only radiation flow into 2K (consider factor 2 increase for worse MLI protection) and all conduction intercepted Plug power increased by 15% 5K thermalization for 3 posts, 8-9 couplers, HOM, leads, cables From Webex SCRF meeting on 5 K shield removal MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling Operation vs Capital Range of effect on plug power (operation cost) is 15% to 55% without redesigning cross section optimistic conditions given the many penetrations that the module has to the 2 K environment, and located at different positions along the transverse section (support at top, couplers to the side) Bulky braids? We need anyway a 5K cryo circuit for 90% of the conduction heat removal From Webex SCRF meeting on 5 K shield removal MAR-23-2008 TTF module thermal modeling

5 K thermal anchors in TTF From Webex SCRF meeting on 5 K shield removal 5 K thermal anchors in TTF 5 K shield surface provides convenient thermalization using small braids MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling Type I--III “Historical” note: One of the most effective cost reduction stategies from generation I to generation II was the elimination of the many braids to perform the shield thermalization Sometimes changes that seem minor have heavy implications later in terms of complexity or cost e.g. discussions yesterday/today of modules plug compatibility between regions changes in the shield geometry from TypeII+ to XFEL proto MAR-23-2008 TTF module thermal modeling

Example: Type III+ modification Small change to eliminate interferences Seems minor, but it complicates life and adds manifacturing stages (in/out rolling machine) price up, estimate amounts to 5-7% MAR-23-2008 TTF module thermal modeling

TTF Thermal analysis with ANSYS We did transient thermal analysis 12 years ago on shields only Serena developed an ANSYS model for static and transient thermal behavior aimed at static and transient heat loads, thermal gradients on the internals during transient, … comparison of different cooling procedures Opportunity to benchmark with present M3* testing at CMTB The input data (cool down times, flow rates, …) from CMTB cryogenic system Several cooldowns available A new set of thermal sensor has been included in CMTB MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling Model overview MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling Thermal conditions In the simulation (both static and transient) we have implemented the following thermal conditions: Cooling provided by convection at the finned Aluminum tubes integrated in both the 5 K and 70 K shields Conduction through penetration and supports (posts, couplers) Thermal radiation load 300 K thermal boundary at top of posts Under development: still working on or planning Model so far has double shield and no radiation load at 2 K No single shield model Details of cavity tanks are still missing Imposed temperature at the GRP and connections to tanks MAR-23-2008 TTF module thermal modeling

Heat conditions in the transient analysis Time dependent convection cooling at the 5 K and 70 K finned tubes and HeGRP Linear T decrease Evaluation of hf from fluid Imposed linear temperature decrease at the 2 K cavity boundary, with no limit to heat exchange Time dependent heat loads: Radiation heat flux acting on the shields surfaces Conduction effects from couplers being implemented at 70 K, 5 K and 2K not modeling real coupler geometry, though heat load at the thermal anchors positions on the shields MAR-23-2008 TTF module thermal modeling

Convective heat exchange on 70 K pipe Derived from fluid properties (T, P, …) and mass flows MAR-23-2008 TTF module thermal modeling

Cooldown rates (linear) 70 K 5 K 2 K Simplified model presented at Sendai, simple linear loads MAR-23-2008 TTF module thermal modeling

Radiation load through MLI CERN data used so far From r.t. to neglibible temperatures using 30 layers MLI 1 W/m2 From 80 K to neglibible temperatures using 10 layers MLI 0.05 W/m2 Scale behavior during cooldown from these data using experimental plots reported in J. Weisend text From J.Weisend MAR-23-2008 TTF module thermal modeling

Heat flow on 70 K pipe during cooldown Simplified model presented at Sendai, simple linear loads MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling Gradient on 70 K shield Simplified model presented at Sendai, simple linear loads MAR-23-2008 TTF module thermal modeling

Work still in progress… Further implementation of heat load sources and complexity of loading conditions Using CMTB cooldown data Getting CMTB data from DESY to be analyzed provides model benchmark TO DO: Structural analysis at maximum gradients mechanical interferences Model can be extended for exploring different cooldown procedures or thermal intercept strategies Big help from W. Maschmann, K. Jensch, R. Lange MAR-23-2008 TTF module thermal modeling

Measured data at CMTB – outer shield MAR-23-2008 TTF module thermal modeling

Measured data at CMTB – inner shield MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling Shield radiation CERN Data on MLI Scaled using T1^4-T2^4 MAR-23-2008 TTF module thermal modeling

Conduction at couplers Tesla TDR Data for stationary operation Scaled with cryocomp data for Kt MAR-23-2008 TTF module thermal modeling

Fluid parameters, 2 K circuit MAR-23-2008 TTF module thermal modeling

Fluid parameters, 5 K circuit MAR-23-2008 TTF module thermal modeling

Fluid parameters, 70 K circuits MAR-23-2008 TTF module thermal modeling

Results with CMTB cooldown – 70 K MAR-23-2008 TTF module thermal modeling

Results with CMTB cooldown – 5 K MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling Loads MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling MAR-23-2008 TTF module thermal modeling

TTF module thermal modeling Detail of inner shield MAR-23-2008 TTF module thermal modeling

Position of coupler load on model MAR-23-2008 TTF module thermal modeling