A Scalable Peer-to-peer Lookup Service for Internet Applications

Slides:



Advertisements
Similar presentations
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT and Berkeley presented by Daniel Figueiredo Chord: A Scalable Peer-to-peer.
Advertisements

Peer to Peer and Distributed Hash Tables
CHORD – peer to peer lookup protocol Shankar Karthik Vaithianathan & Aravind Sivaraman University of Central Florida.
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert MorrisDavid, Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Prepared by Ali Yildiz (with minor modifications by Dennis Shasha)
Technische Universität Yimei Liao Chemnitz Kurt Tutschku Vertretung - Professur Rechner- netze und verteilte Systeme Chord - A Distributed Hash Table Yimei.
Technische Universität Chemnitz Kurt Tutschku Vertretung - Professur Rechner- netze und verteilte Systeme Chord - A Distributed Hash Table Yimei Liao.
Chord: A Scalable Peer-to- Peer Lookup Service for Internet Applications Ion StoicaRobert Morris David Liben-NowellDavid R. Karger M. Frans KaashoekFrank.
The Chord P2P Network Some slides have been borowed from the original presentation by the authors.
CHORD: A Peer-to-Peer Lookup Service CHORD: A Peer-to-Peer Lookup Service Ion StoicaRobert Morris David R. Karger M. Frans Kaashoek Hari Balakrishnan Presented.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications Speaker: Cathrin Weiß 11/23/2004 Proseminar Peer-to-Peer Information Systems.
Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M
Distributed Hash-based Lookup for Peer-to-Peer Systems Mohammed Junaid Azad Gopal Krishnan Mtech1,CSE.
Chord: A scalable peer-to- peer lookup service for Internet applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashock, Hari Balakrishnan.
1 1 Chord: A scalable Peer-to-peer Lookup Service for Internet Applications Dariotaki Roula
Chord:A scalable peer-to-peer lookup service for internet applications
Somdas Bandyopadhyay Anirban Basumallik
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan Presented.
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications
Robert Morris, M. Frans Kaashoek, David Karger, Hari Balakrishnan, Ion Stoica, David Liben-Nowell, Frank Dabek Chord: A scalable peer-to-peer look-up.
Robert Morris, M. Frans Kaashoek, David Karger, Hari Balakrishnan, Ion Stoica, David Liben-Nowell, Frank Dabek Chord: A scalable peer-to-peer look-up protocol.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion StoicaRobert Morris David Liben-NowellDavid R. Karger M. Frans KaashoekFrank.
Presented by Elisavet Kozyri. A distributed application architecture that partitions tasks or work loads between peers Main actions: Find the owner of.
Peer to Peer File Sharing Huseyin Ozgur TAN. What is Peer-to-Peer?  Every node is designed to(but may not by user choice) provide some service that helps.
1 Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Robert Morris Ion Stoica, David Karger, M. Frans Kaashoek, Hari Balakrishnan.
Topics in Reliable Distributed Systems Lecture 2, Fall Dr. Idit Keidar.
Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications Stoica et al. Presented by Tam Chantem March 30, 2007.
Idit Keidar, Principles of Reliable Distributed Systems, Technion EE, Spring Principles of Reliable Distributed Systems Lecture 2: Peer-to-Peer.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari alakrishnan.
Topics in Reliable Distributed Systems Fall Dr. Idit Keidar.
1 CS 194: Distributed Systems Distributed Hash Tables Scott Shenker and Ion Stoica Computer Science Division Department of Electrical Engineering and Computer.
Peer To Peer Distributed Systems Pete Keleher. Why Distributed Systems? l Aggregate resources! –memory –disk –CPU cycles l Proximity to physical stuff.
Concurrent node joins and Stabilization Παρουσίαση: Νίκος Κρεμμυδάς Πάνος Σκυβαλίδας.
Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Lecture 3 1.
Effizientes Routing in P2P Netzwerken Chord: A Scalable Peer-to- peer Lookup Protocol for Internet Applications Dennis Schade.
Chord & CFS Presenter: Gang ZhouNov. 11th, University of Virginia.
1 Reading Report 5 Yin Chen 2 Mar 2004 Reference: Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications, Ion Stoica, Robert Morris, david.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications Xiaozhou Li COS 461: Computer Networks (precept 04/06/12) Princeton University.
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT and Berkeley presented by Daniel Figueiredo Chord: A Scalable Peer-to-peer.
Presentation 1 By: Hitesh Chheda 2/2/2010. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT Laboratory for Computer Science.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
Presented by: Tianyu Li
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan Presented.
SIGCOMM 2001 Lecture slides by Dr. Yingwu Zhu Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
Lecture 2 Distributed Hash Table
Peer to Peer A Survey and comparison of peer-to-peer overlay network schemes And so on… Chulhyun Park
Chord Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber Google,
Idit Keidar, Principles of Reliable Distributed Systems, Technion EE, Spring Principles of Reliable Distributed Systems Lecture 2: Distributed Hash.
Indranil Gupta (Indy) September 27, 2012 Lecture 10 Peer-to-peer Systems II Reading: Chord paper on website (Sec 1-4, 6-7)  2012, I. Gupta Computer Science.
Md Tareq Adnan Centralized Approach : Server & Clients Slow content must traverse multiple backbones and long distances Unreliable.
CS694 - DHT1 Distributed Hash Table Systems Hui Zhang University of Southern California.
Chapter 5 Naming (I) Speaker : Jyun-Yao Huang 1 Application and Practice of Distributed Systems.
CS 425 / ECE 428 Distributed Systems Fall 2015 Indranil Gupta (Indy) Peer-to-peer Systems All slides © IG.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications * CS587x Lecture Department of Computer Science Iowa State University *I. Stoica,
1 Distributed Hash tables. 2 Overview r Objective  A distributed lookup service  Data items are distributed among n parties  Anyone in the network.
The Chord P2P Network Some slides taken from the original presentation by the authors.
Peer-to-Peer Information Systems Week 12: Naming
Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M
Magdalena Balazinska, Hari Balakrishnan, and David Karger
CSE 486/586 Distributed Systems Distributed Hash Tables
The Chord P2P Network Some slides have been borrowed from the original presentation by the authors.
(slides by Nick Feamster)
DHT Routing Geometries and Chord
Prof. Leonardo Mostarda University of Camerino
MIT LCS Proceedings of the 2001 ACM SIGCOMM Conference
Consistent Hashing and Distributed Hash Table
P2P: Distributed Hash Tables
CSE 486/586 Distributed Systems Distributed Hash Tables
A Scalable Peer-to-peer Lookup Service for Internet Applications
Peer-to-Peer Information Systems Week 12: Naming
Presentation transcript:

A Scalable Peer-to-peer Lookup Service for Internet Applications Chord A Scalable Peer-to-peer Lookup Service for Internet Applications Dimitris Mavrommatis Computer Science Department University of Crete May 10, 2016

What is Chord? In short: a peer-to-peer lookup service. Solves problem of locating a data item in a collection of distributed nodes, considering frequent node arrivals and departures. Uses a variant of consistent hashing. Supports just one operation: given a key, it maps the key onto a node.

Comparative Performance Memory Lookup Latency Messages for Lookup Napster O(1) O(N)Server O(1) Gnutella O(N) Chord O(log(N))

Chord Characteristics Simplicity, provable correctness, and provable performance Each Chord node needs routing information about only a few other nodes Resolves lookups via messages to other nodes (iteratively or recursively) Maintains routing information as nodes join and leave the system

Addressed Difficult Problems Load balance: distributed hash function, spreading keys evenly over nodes Decentralization: chord is fully distributed, no node more important than other, improves robustness Scalability: logarithmic growth of lookup costs with number of nodes in network, even very large systems are feasible Availability: chord automatically adjusts its internal tables to ensure that the node responsible for a key can always be found Flexible naming: no constraints on the structure of the keys – key-space is flat, flexibility in how to map names to Chord keys

Consistent Hashing Hash function assigns each node and key an m-bit identifier using a base hash function such as SHA-1 ID(node) = hash(IP, Port) ID(key) = hash(key) Hash is truncated to m bits; where m must be chosen based on total entries to avoid collisions (very unlikely). Called peer id or key id (number between 0 and 2 𝑚 −1). Can then map peers and keys to one of 2 𝑚 logical points on a circle. Properties of consistent hashing: Function balances load: all nodes receive roughly the same number of keys – good? When an Nth node joins (or leaves) the network, only an O(1/N) fraction of the keys are moved to a different location

Construction of the Chord ring identifier node X key 6 4 2 6 5 1 3 7 1 successor(1) = 1 identifier circle successor(6) = 0 6 2 successor(2) = 3 2

Node Joins and Departures 6 6 4 2 6 5 1 3 7 1 successor(6) = 7 successor(1) = 3 2 1

Acceleration of Lookups Lookups are accelerated by maintaining additional routing information Each node maintains a routing table with (at most) m entries (where N=2m) called the finger table ith entry in the table at node n contains the identity of the first node, s, that succeeds n by at least 2i-1 on the identifier circle (clarification on next slide) s = successor(n + 2i-1) (all arithmetic mod 2) s is called the ith finger of node n, denoted by n.finger(i).node

Finger Tables Finger table: finger[i] = successor (n + 2 ) i-1 N8 + 2 N14 N8 + 4 N14 N8 + 8 N21 N8 +16 N32 N8 +32 N42

Finger Tables 4 2 6 5 1 3 7 finger table start int. succ. keys 6 1 2 4 [1,2) [2,4) [4,0) 1 3 4 2 6 5 1 3 7 finger table start int. succ. keys 1 2 3 5 [2,3) [3,5) [5,1) finger table start int. succ. keys 2 4 5 7 [4,5) [5,7) [7,3)

Finger Tables - Characteristics Important characteristics of this scheme: Each node stores information about only a small number of nodes (m) Each nodes knows more about nodes closely following it than about nodes further away A finger table generally does not contain enough information to directly determine the successor of an arbitrary key k Repetitive queries to nodes that immediately precede the given key will lead to the key’s successor eventually

Scalable node localization Search in finger table for the nodes which most immediatly precedes id Invoke find_successor from that node => Number of messages O(log N)!

Node Joins – with Finger Tables keys start int. succ. 6 1 2 4 [1,2) [2,4) [4,0) 1 3 6 4 2 6 5 1 3 7 finger table start int. succ. keys 1 2 3 5 [2,3) [3,5) [5,1) 6 finger table start int. succ. keys 7 2 [7,0) [0,2) [2,6) 3 finger table keys start int. succ. 2 4 5 7 [4,5) [5,7) [7,3) 6 6

Node Departures – with Finger Tables keys start int. succ. 1 2 4 [1,2) [2,4) [4,0) 1 3 3 6 4 2 6 5 1 3 7 finger table keys start int. succ. 1 2 3 5 [2,3) [3,5) [5,1) 3 6 finger table keys start int. succ. 6 7 2 [7,0) [0,2) [2,6) 3 finger table keys start int. succ. 2 4 5 7 [4,5) [5,7) [7,3) 6

Concurrent Operations and Failures Basic “stabilization” protocol is used to keep nodes’ successor pointers up to date, which is sufficient to guarantee correctness of lookups Those successor pointers can then be used to verify the finger table entries Every node runs stabilize periodically to find newly joined nodes

Stabilization after Join ns n joins predecessor = nil n acquires ns as successor via some n’ n notifies ns being the new predecessor ns acquires n as its predecessor np runs stabilize np asks ns for its predecessor (now n) np acquires n as its successor np notifies n n will acquire np as its predecessor all predecessor and successor pointers are now correct fingers still need to be fixed, but old fingers will still work pred(ns) = n n nil succ(np) = ns pred(ns) = np succ(np) = n np

Failure Recovery Key step in failure recovery is maintaining correct successor pointers To help achieve this, each node maintains a successor-list of its r nearest successors on the ring If node n notices that its successor has failed, it replaces it with the first live entry in the list stabilize will correct finger table entries and successor-list entries pointing to failed node Performance is sensitive to the frequency of node joins and leaves versus the frequency at which the stabilization protocol is invoked

Experimental Results Latency grows slowly with the total number of nodes Path length for lookups is about ½ log2N Chord is robust in the face of multiple node failures

Simulation Results The fraction of look ups the fail as a function of the fraction of nodes that fail. The fraction of lookups that fail as a function of the rate(over time) at which nodes fail and join.

Simulation Results The mean and 1st and 99th percentiles of the number of keys stored per node in a 104 node network. The probability density function (PDF) of the number of keys per node. The total number of keys is 5 × 10

What to keep? Chord protocol solves searches in decentralized manner Each node maintains routing information of about O(log(𝑁)) other nodes. Updates to the routing information require 𝑂(𝑙𝑜𝑔 2 (𝑁)) messages. Simple implementation

Thanks for the attention! Questions?

References [1] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup service for internet applications,” SIGCOMM Comput. Commun. Used reading material from University of California, Berkeley and Max Planck institute