10 Elementary Functions Graphing Parent Functions

Slides:



Advertisements
Similar presentations
Write equation or Describe Transformation. Write the effect on the graph of the parent function down 1 unit1 2 3 Stretch by a factor of 2 right 1 unit.
Advertisements

Trig Graphs. y = sin x y = cos x y = tan x y = sin x + 2.
MTH 112 Elementary Functions Chapter 5 The Trigonometric Functions Section 6 – Graphs of Transformed Sine and Cosine Functions.
Find the period of the function y = 4 sin x
Section 1.6 Transformation of Functions
6.5 - Graphing Square Root and Cube Root
8-2 Properties of Exponential Functions. The function f(x) = b x is the parent of a family of exponential functions for each value of b. The factor a.
3-2 Families of Graphs Pre Calc A. Parent Graphs.
WHICH TRANSFORMATIONS DO YOU KNOW? ROTATION WHICH TRANSFORMATIONS DO YOU KNOW? ROTATION.
Section 1.4 Transformations and Operations on Functions.
Section 2.5 Transformations Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Section 3-2: Analyzing Families of Graphs A family of graphs is a group of graphs that displays one or more similar characteristics. A parent graph is.
Name : Mohammed Ali Alghamdi ID : Pre-calculas Sec
Pre-Calculus Honors 4.5, 4.6, 4.7: Graphing Trig Functions
Ali AlSalboukh
Project 1: Graphing Functions
Project 1 Name: Abdallah Tariq Bashawri ID: Subject: Pre Calculus Section: 105 Due: 1st march,2013.
2.6 Families of Functions Learning goals
Section 6.2 – Graphs of Exponential Functions
Pre-AP Algebra 2 Goal(s):
Absolute Value Transformations
Use Absolute Value Functions and Transformations
Translation Images of Circular Functions
2.6 Translations and Families of Functions
3.2 Families of Graphs Objectives: Identify transformations of simple graphs. Sketch graphs of related functions.
Section 2.5 Transformations.
Sum and Difference Identities for the Sin Function
Chain Rule AP Calculus.
Unit 2: Functions.
Pre-Calculus :Chapter 3.1 Exponential Functions and Their Graphs
Area Between Two Curves
Unit 2: Functions.
Who Wants to Be a Transformation Millionaire?
TRANSFORMATIONS OF FUNCTIONS
Graphing Exponential Functions
The graph of f(x) is depicted on the left. At x=0.5,
Section 1.6 Transformation of Functions
2.7 Graphing Absolute Value Functions
Unit 2: Functions.
Rotated Conics WOW!!!.
Frequency and Phase Shifts
TRANSFORMATIONS OF FUNCTIONS
Pre-Calculus Go over homework Notes: Increasing and Decreasing
1.5b Combining Transformations
Graph of Secant, Cosecant, and Cotangent
4.2 – Translations of the Graphs of the Sine and Cosine Functions
2.5 Graphing Techniques; Transformations
Parent Function Transformations
Writing Trig Functions
2.7 Graphing Absolute Value Functions
§ 8.3 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions.
6.4a Transformations of Exponential Functions
Horizontal shift right 2 units Vertical shift up 1 unit
Horizontal Shift left 4 units Vertical Shift down 2 units
Pre-Calculus PreAP/Dual, Revised ©2014
Shifting, Reflecting, and Stretching Graphs
Predicting Changes in Graphs
Determining the Function Obtained from a Series of Transformations.
Predicting Changes in Graphs
10. Writing the equation of trig functions
Section 4.1 Day 2 Antiderivatives and Indefinite Integration
6.4c Transformations of Logarithmic functions
2.5 Graphing Techniques; Transformations
15 – Transformations of Functions Calculator Required
Transformations.
Shifting.
Getting ready for Pre-Calculus class.
Parent Functions and Transformations
Quick Review Graph the function: 2tan
Warm up honors algebra 2 3/1/19
Presentation transcript:

10 Elementary Functions Graphing Parent Functions Project #1 Fahad Alkanaan ID: 201202635 Section: 101 Pre-Calculus Submitted Date: 16 Oct 2012 Due Date: 17 Oct 2012

Parent Function f(x)=x Shift 3 units up f(x)= x+3 Shift 2 units down f(x)= x-2 Shift 5 units left f(x)= (x+5) Shift 4 units right f(x)= (x-4) Reflection around x-axis and 7 units up f(x)= -x+7 Reflection around y-axis and 6 units down f(x)= -x-6

Parent Function f(x)= x^2 Shift up 3 units f(x)= x^2 +3 Shift down 2 units f(x)= x^2 -2 Shift left 1 unit f(x)= (x+1)^2 Shift right 4 units f(x)= (x-4)^2 Shift around x-axis f(x)= -x^2

Parent Function f(x)= abs x Shift up 2 units f(x)= abs x+2 Shift down 3 units f(x)= abs x-3 Shift left 4 units f(x)= abs (x+4) Shift right 1 unit f(x)= abs (x-1) Shift around x-axis f(x)= - abs x

Parent Function f(x)= sqrt x Shift up 4 units f(x)= sqrt x+4 Shift down 2 units f(x)= sqrt x-2 Shift left 3 units f(x)= sqrt (x+3) Shift right 1 unit f(x)= sqrt (x-1) Shift around x-axis f(x)= - sqrt x Shift around y-axis f(x)= - sqrt -x

Parent Function f(x)= 2^x Shift up 3 units f(x)= 2^x +3 Shift down 5 units f(x)= 2^x – 5 Shift left 1 unit f(x)= 2^(x+1) Shift right 2 units f(x)= 2^(x-2) Reflects around x-axis f(x)= -2^x Reflects around y-axis f(x)= 2^-x Reflection of reflected around y-axis f(x)= -2^-x

Parent Function f(x)= 1/x Shift up 1 unit f(x)= 1/x +1 Shift down 5 units f(x)= 1/x -5 Shift left 3 units f(x)= 1/(x+3) Shift right 4 units f(x) 1/(x-4) reflex around x-axis f(x)=-1/x

Parent Function f(x)= x^3 Shift up 2 units f(x)= x^3 +2 Shift down 4 units f(x)= x^3 -4 Shift left 3 units f(x)= (x+3)^3 Shift right 6 units f(x)= (x-6)^3 Reflects around x-axis f(x)= -x^3

Parent Function f(x)= Sin x Shift up 7 units f(x)= Sin x+7 Shift down 4 units f(x)= Sin x-4 Shift left 2 units f(x)= Sin (x+2) Shift right 1 unit f(x)= Sin (x-1) Reflects around x-axis f(x)= - Sin x

Parent Function f(x)= Cos x Shift up 2 units f(x)= Cos x+2 Shift down 5 units f(x)= Cos x-5 Shift left 4 units f(x)= Cos (x+4) Shift right 7 units f(x)= Cos (x-7) Reflects around x-axis f(x)= - Cos x

Parent Function f(x)= Tan x Shift up 1 unit f(x)= Tan x+1 Shift down 2 units f(x)= Tan x-2 Shift left 5 units f(x)= Tan (x+5) Shift right 4 units f(x)= Tan (x-4) Reflects around x-axis f(x)= - Tan x