Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen

Slides:



Advertisements
Similar presentations
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Advertisements

Štefan Olejník Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia Coulomb energy, remnant symmetry in Coulomb gauge, and phases of.
2+1 Flavor Polyakov-NJL Model at Finite Temperature and Nonzero Chemical Potential Wei-jie Fu, Zhao Zhang, Yu-xin Liu Peking University CCAST, March 23,
Phase Structure of Thermal QCD/QED: A “Gauge Invariant” Analysis based on the HTL Improved Ladder Dyson-Schwinger Equation Hisao NAKKAGAWA Nara University.
On the formulation of a functional theory for pairing with particle number restoration Guillaume Hupin GANIL, Caen FRANCE Collaborators : M. Bender (CENBG)
Test of the Stefan-Boltzmann behavior for T>0 at tree-level of perturbation theory on the lattice DESY Summer Student 2010 Carmen Ka Ki Li Imperial College.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
Functional renormalization – concepts and prospects.
CONFINEMENT WITHOUT A CENTER: THE EXCEPTIONAL GAUGE GROUP G(2) M I C H E L E P E P E U n i v e r s i t y o f B e r n (S w i t z e r l a n d)
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Hamilton approch to Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen Collaborators: D. Campagnari, D. Epple, C. Feuchter, M. Leder, M.Quandt, W.
Heavy quark potential and running coupling in QCD W. Schleifenbaum Advisor: H. Reinhardt University of Tübingen EUROGRADworkshop Todtmoos 2007.
Lattice QCD 2007Near Light Cone QCD Near Light Cone QCD On The Lattice H.J. Pirner, D. Grünewald E.-M. Ilgenfritz, E. Prokhvatilov Partially funded by.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
A CRITICAL POINT IN A ADS/QCD MODEL Wu, Shang-Yu (NCTU) in collaboration with He, Song, Yang, Yi and Yuan, Pei-Hung , to appear in JHEP
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
INSTANTON AND ITS APPLICATION Nam, Seung-il Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Japan YITP, Kyoto University YITP Lunch.
Variational Approach to Non- Equilibrium Gluodynamics 東京大学大学院 総合文化研究科 西山陽大.
IR QCD properties from ST, DS, and LQCD QCD conference St Goar, March 17-20, 2008 Ph.,Boucaud, J.-P. Leroy, A. Le Yaouanc, J. Micheli, O. Pène, J. Rodriguez-Quintero,
Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen C. Feuchter & H. R. hep-th/ , PRD70 hep-th/ , PRD71 hep-th/ D. Epple, C. Feuchter,
1 Dynamical Holographic QCD Model Mei HUANG Institute of High Energy Physics, CAS Theoretical Physics Center for Science Facilities, CAS Seminar at USTC,
“Einstein Gravity in Higher Dimensions”, Jerusalem, Feb., 2007.
“Models of Gravity in Higher Dimensions”, Bremen, Aug , 2008.
QED at Finite Temperature and Constant Magnetic Field: The Standard Model of Electroweak Interaction at Finite Temperature and Strong Magnetic Field Neda.
Imaginary Chemical potential and Determination of QCD phase diagram
Finite Temperature Field Theory Joe Schindler 2015.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Infrared gluons in the stochastic quantization approach Lattice20081 Contents 1.Introduction 2.Method: Stochastic gauge fixing 3.Gluon propagators 4.Numerical.
Holographic Superconductors from Gauss-Bonnet Gravity Rong-Gen Cai Institute of Theoretical Physics Chinese Academy of Sciences (May 7, 2012) 2012 海峡两岸粒子物理和宇宙学研讨会,
Instanton vacuum at finite density Hyun-Chul Kim Department of Physics Inha University S.i.N. and H.-Ch.Kim, Phys. Rev. D 77, (2008) S.i.N., H.Y.Ryu,
In eq.(1), represent the MFA values of the sigma fields, G S,  P the corresponding coupling constants (see Ref.[3] for details), and is the MFA Polyakov.
Quantum Fluctuation and scaling in the Polyakov loop -Quark-Meson model Chiral models: predictions under mean field dynamics Role of Quantum and Thermal.
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
Hamiltonian approach to Yang-Mills Theory in Coulomb gauge H. Reinhardt Tübingen Collaborators: G. Burgio, M.Quandt, P. Watson D. Epple, C. Feuchter, W.
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
Why Extra Dimensions on the Lattice? Philippe de Forcrand ETH Zurich & CERN Extra Dimensions on the Lattice, Osaka, March 2013.
Center-Symmetric 1/N Expansion Phys.Rev.D71, (hep-th/ v2) Outline : A center-symmetric background at finite temperature ‘t Hooft diagrams and.
Holographic QCD in the medium
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
GRAVITON BACKREACTION & COSMOLOGICAL CONSTANT
1 Nontopological Soliton in the Polyakov Quark Meson Model Hong Mao ( 毛鸿 ) Department of Physics, Hangzhou Normal University With: Jinshuang Jin ( HZNU.
LORENTZ AND GAUGE INVARIANT SELF-LOCALIZED SOLUTION OF THE QED EQUATIONS I.D.Feranchuk and S.I.Feranchuk Belarusian University, Minsk 10 th International.
The QCD phase diagram and fluctuations Deconfinement in the SU(N) pure gauge theory and Polyakov loop fluctuations Polyakov loop fluctuations in the presence.
Phase Structure of Thermal QCD/QED through the HTL Improved Ladder Dyson-Schwinger Equation Hisao NAKKAGAWA Nara University in collaboration with Hiroshi.
1 Bhupendra Nath Tiwari IIT Kanpur in collaboration with T. Sarkar & G. Sengupta. Thermodynamic Geometry and BTZ black holes This talk is mainly based.
Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic field Neda Sadooghi Department of Physics Sharif University.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
Horizon thermodynamics and Lovelock black holes
Hamiltonian Flow in Coulomb Gauge Yang-Mills theory
Matter-antimatter coexistence method for finite density QCD
Lattice QCD at finite temperature Péter Petreczky
Speaker: Takahiro Doi (Kyoto University)
Ariel Edery Bishop’s University
Raju Venugopalan Brookhaven National Laboratory
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev
NGB and their parameters
Lecture 2 Evolution and resummation
Chiral phase transition in magnetic field
Continuum threshold and Polyakov loop as deconfinement order parameters. M. Loewe, Pontificia Universidad Católica de Chile (PUC) and CCTVAL, Valparaíso.
Color Superconductivity in dense quark matter
Tomislav Prokopec, ITP Utrecht University
with Erich Poppitz (u of Toronto)
QCD at very high density
Quantum gravity predictions for particle physics and cosmology
Presentation transcript:

Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen Finite Temperature and the Polyakov Loop in the Covariant Variational Approach to Yang-Mills Theory Institut für Theoretische Physik Eberhard-Karls-Universität Tübingen M. Quandt (Uni Tübingen)

Overview Variational principle for the effective action in YM theory Propagators at T=0 Propagators at T > 0 Effective potential of the Polyakov loop Summary and Outlook M. Quandt (Uni Tübingen)

The Variation Principle M. Quandt (Uni Tübingen)

Effective Action Principle Variation principle for functional probability measure Free action euclidean action entropy Variation principle I Gibbs measure Schwinger functions M. Quandt (Uni Tübingen)

Variation principle II Effective Action Principle Variation principle II (Quantum effective action) Note: Usually and proper functions Variation principle III (Yang-Mills-Theory) FP determinant relative entropy M. Quandt (Uni Tübingen)

Ansatz for trial measure: Effective Action Principle Ansatz for trial measure:     Determines kernels in 2. Minimal value is effective action (1PI) M. Quandt (Uni Tübingen)

A Covariant Variation Principle Effective Action Principle Integral equation system like DSE or FRG simple renormalization through counter terms can discriminate competing solutions (lowest action wins) easy access to thermodynamics Strategy study system with relatively few kernels in ansatz need to optimize ansatz Systematic improvement possible using DSE Optimization of DSE truncation M. Quandt (Uni Tübingen) A Covariant Variation Principle

Gaussian Trial Measure M. Quandt (Uni Tübingen)

Curvature Approximation Gaussian Trial Measure Gaussian ansatz UV : gluons weakly interacting IR : configurations near Gribov horizon dominant self-interaction in such configs sub-dominant Curvature Approximation curvature M. Quandt (Uni Tübingen)

Free action Gap Equation evaluation of : only Wick‘s theorem = + + -1 Gaussian Ansatz Free action evaluation of : only Wick‘s theorem Gap Equation -1 -1 = + + M. Quandt (Uni Tübingen)

Ghost sector Use resolvent identity on FP operator Gaussian Ansatz Ghost sector Use resolvent identity on FP operator in terms of ghost form factor -1 -1 = + rainbow approx. M. Quandt (Uni Tübingen)

Curvature Equation To given loop order = M. Quandt (Uni Tübingen) Gaussian Ansatz Curvature Equation To given loop order = M. Quandt (Uni Tübingen)

Counterterms Renormalization conditions (3 scales ) fix gluon field ghost field gluon mass Renormalization conditions (3 scales ) fix scaling/decoupling constitutent mass at M. Quandt (Uni Tübingen)

Propagators at T=0 M. Quandt (Uni Tübingen)

Scaling Solution IR exponents: sum rule violation: Propagators at T=0 Scaling Solution MQ, H. Reinhardt, J. Heffner, Phys. Rev. D89 035037 (2014) Lattice data from Bogolubsky et al., Phys. Lett. B676 69 (2009) IR exponents: sum rule violation: M. Quandt (Uni Tübingen)

Decoupling Solution gluon propagator ghost form factor Propagators at T=0 Decoupling Solution MQ, H. Reinhardt, J. Heffner, Phys. Rev. D89 035037 (2014) Lattice data from Bogolubsky et al., Phys. Lett. B676 69 (2009) gluon propagator ghost form factor M. Quandt (Uni Tübingen)

A Covariant Variation Principle Finite Temperature M. Quandt (Uni Tübingen) A Covariant Variation Principle

Extension to Finite Temperature imaginary time formalism compactify euclidean time periodic b.c. for gluons (up to center twists) periodic b.c. for ghosts (even though fermions) Extension to T>0 straightforward M. Quandt (Uni Tübingen)

Lorentz structure of propagator Finite Temperature Lorentz structure of propagator heat bath singles out restframe (1,0,0,0) breaks Lorentz invariance two different 4-transversal projectors 3-transversal 3-longitudinal Two Lorentz structures for kernel and curvature M. Quandt (Uni Tübingen)

Gap Equations induced gluon masses now temperature-dependent Finite Temperature Gap Equations induced gluon masses now temperature-dependent renormalization by T=0 counter terms M. Quandt (Uni Tübingen)

longitudinal gluon transversal gluon ghost formfactor Finite Temperature MQ, H. Reinhardt, Phys. Rev. D92 025051 (2015) longitudinal gluon transversal gluon ghost formfactor M. Quandt (Uni Tübingen)

Polyakov Loop M. Quandt (Uni Tübingen)

Interpretation: free static quark energy Polyakov Loop Polyakov loop Interpretation: free static quark energy Center symmetry maps If unbroken [confinement] If broken [deconfinement] M. Quandt (Uni Tübingen)

G=SU(2) Polyakov gauge [ ] Background gauge [ ] Polyakov Loop Alternative order parameter G=SU(2) Polyakov gauge [ ] Background gauge [ ] Background gauge Transfer Landau -- Background replace in basis where rhs is diagonal replace   are the simple roots replace sum over simple roots M. Quandt (Uni Tübingen)

Effective potential of background field (Polyakov Loop) Weiß potential Similarly for G=SU(3) where M. Quandt (Uni Tübingen)

Phase transition for G=SU(2) Polyakov Loop Phase transition for G=SU(2) MQ, H. Reinhardt, Phys. Rev. D, in press (2016) 2nd order transition critical temperature Eff. Potential for Polyakov loop Lattice Lucini, Teper, Wenger, JHEP 01 (2004) 061 M. Quandt (Uni Tübingen)

Phase transition for G=SU(3) Polyakov Loop Phase transition for G=SU(3) MQ, H. Reinhardt, Phys. Rev. D, in press (2016) slice of eff. Potential for Polyakov loop 1st order transition critical temperature Lattice Lucini, Teper, Wenger, JHEP 01 (2004) 061 M. Quandt (Uni Tübingen)

Effective potential for Polakov loop in G=SU(3) Polyakov Loop Effective potential for Polakov loop in G=SU(3) MQ, H. Reinhardt, Phys. Rev. D, in press (2016) Deconfined phase Confined phase V(x,y) maximal at center symmetrc points V(x,y) minimal at center symmetrc points M. Quandt (Uni Tübingen)

Effective potential for Polakov loop in G=SU(3) Polyakov Loop Effective potential for Polakov loop in G=SU(3) MQ, H. Reinhardt, Phys. Rev. D, in press (2016) Deconfined phase Confined phase V(x,y) maximal at center symmetrc points V(x,y) minimal at center symmetrc points M. Quandt (Uni Tübingen)

Sumary and Outlook M. Quandt (Uni Tübingen)

Conclusions Summary Variational Principle for Effective Action + Gaussian Ansatz Propagators at T=0 (fix all renorm. constants) Propagators at T > 0 Polyakov loop and deconfinement, ghost dominance Outlook Simple access to thermodynamics   DSE Inclusion of fermions M. Quandt (Uni Tübingen)